Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(5): 5224-5229, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38343910

ABSTRACT

We calculate, using time-dependent density functional theory, absorption and circular dichroism (CD) spectra for a series of small helical gold nanorod structures with a width of 0.6 nm and length increasing from 0.7 nm for Au24 to 1.9 nm for Au56. For a low-energy window, ranging from 1.7 to 4.1 eV, broadening the lines in the absorption spectra results in a low energy peak which previous studies have identified as the (localized) plasmon resonance. As expected, the absorption peak position of the plasmon resonance systematically redshifts as the length of the nanorod increases. However, trends in the CD and straightforwardly broadened CD spectra are more difficult to discern. We introduce the idea of an absolute value CD spectrum and show that broadening the lines results in a low energy peak that has not previously been reported. The peak position systematically redshifts as the length of the nanorod increases but over a significantly smaller range than that for the absorption spectrum.

2.
Nat Commun ; 14(1): 5475, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37673908

ABSTRACT

The analysis of microbial genomes from human archaeological samples offers a historic snapshot of ancient pathogens and provides insights into the origins of modern infectious diseases. Here, we analyze metagenomic datasets from 38 human archaeological samples and identify bacterial genomic sequences related to modern-day Clostridium tetani, which produces the tetanus neurotoxin (TeNT) and causes the disease tetanus. These genomic assemblies had varying levels of completeness, and a subset of them displayed hallmarks of ancient DNA damage. Phylogenetic analyses revealed known C. tetani clades as well as potentially new Clostridium lineages closely related to C. tetani. The genomic assemblies encode 13 TeNT variants with unique substitution profiles, including a subgroup of TeNT variants found exclusively in ancient samples from South America. We experimentally tested a TeNT variant selected from an ancient Chilean mummy sample and found that it induced tetanus muscle paralysis in mice, with potency comparable to modern TeNT. Thus, our ancient DNA analysis identifies DNA from neurotoxigenic C. tetani in archaeological human samples, and a novel variant of TeNT that can cause disease in mammals.


Subject(s)
DNA, Ancient , Tetanus , Humans , Animals , Mice , Neurotoxins , Phylogeny , Clostridium , Chile , Mammals
3.
J Phys Chem A ; 125(11): 2226-2231, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33689332

ABSTRACT

We show, using density functional theory and ab initio molecular dynamics, that certain small colloidal quantum dots with a mixed nanocrystal core capped with achiral surface ligands spontaneously form a triskelion (from the Greek, three-legged) structure with (approximate) C3 symmetry that can be dynamically stable at room temperature when additionally capped with small amine ligands. Furthermore, the nanocrystal core also forms a triskelion structure. The focus of our study is a colloidal quantum dot with a Cd16Se7Te3 core (and a charge of +12) capped with negatively charged surface ligands to achieve charge neutrality-in the simplest instance, 12 Cl--to form the colloidal quantum dot Cd16Se7Te3Cl12. The small size of the core (for which almost all atoms are surface atoms), the high positive charge that destabilizes the core, the mixed (Cd/Te) composition that creates mechanical strain in the core, and the inclusion of precisely three Te atoms in the predominantly Se core all play critical roles in the spontaneous formation of the triskelion structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...