Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 171: 113670, 2020 01.
Article in English | MEDLINE | ID: mdl-31628910

ABSTRACT

Human butyrylcholinesterase (E.C. 3.1.1.8) purified from blood plasma has previously been shown to provide protection against up to five and a half times the median lethal dose of an organophosphorus nerve agent in several animal models. In this study the stoichiometric nature of the protection afforded by human butyrylcholinesterase against organophosphorus nerve agents was investigated in guinea pigs. Animals were administered human butyrylcholinesterase (26.15 mg/kg ≡ 308 nmol/kg) by the intravascular or intramuscular route. Animals were subsequently dosed with either soman or VX in accordance with a stage-wise adaptive dose design to estimate the modified median lethal dose in treated animals. Human butyrylcholinesterase (308 nmol/kg) increased the median lethal dose of soman from 154 nmol/kg to 770 nmol/kg. Comparing the molar ratio of agent molecules to enzyme active sites yielded a stoichiometric protective ratio of 2:1 for soman, likely related to the similar stereoselectivity the enzyme has compared to the toxic target, acetylcholinesterase. In contrast, human butyrylcholinesterase (308 nmol/kg) increased the median lethal dose of VX from 30 nmol/kg to 312 nmol/kg, resulting in a stoichiometric protective ratio of only 1:1, suggesting a lack of stereoselectivity for this agent.


Subject(s)
Butyrylcholinesterase/administration & dosage , Chemical Warfare Agents/poisoning , Nerve Agents/poisoning , Poisoning/prevention & control , Animals , Area Under Curve , Butyrylcholinesterase/blood , Butyrylcholinesterase/chemistry , Chemical Warfare Agents/chemistry , Guinea Pigs , Humans , Injections, Intramuscular , Injections, Intravenous , Lethal Dose 50 , Male , Metabolic Clearance Rate , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacokinetics , Organothiophosphorus Compounds/chemistry , Organothiophosphorus Compounds/poisoning , Soman/chemistry , Soman/poisoning , Stereoisomerism
2.
Chem Biol Interact ; 203(1): 186-90, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23041042

ABSTRACT

In an effort to discover novel catalytic bioscavengers of organophosphorus (OP) nerve agents, cell lysates from a diverse set of bacterial strains were screened for their capacity to hydrolyze the OP nerve agents VX, VR, and soman (GD). The library of bacterial strains was identified using both random and rational approaches. Specifically, two representative strains from eight categories of extremophiles were chosen at random. For the rational approach, the protein sequence of organophosphorus hydrolase (OPH) from Brevundimonas diminuta was searched against a non-redundant protein database using the Basic Local Alignment Search Tool to find regions of local similarity between sequences. Over 15 protein sequences with significant sequence similarity to OPH were identified from a variety of bacterial strains. Some of these matches were based on predicted protein structures derived from bacterial genome sequences rather than from bona fide proteins isolated from bacteria. Of the 25 strains selected for nerve agent testing, three bacterial strains had measurable levels of OP hydrolase activity. These strains are Ammoniphilus oxalaticus, Haloarcula sp., and Micromonospora aurantiaca. Lysates from A. oxalaticus had detectable hydrolysis of VR; Haloarcula sp. had appreciable hydrolysis of VX and VR, whereas lysates from M. aurantiaca had detectable hydrolysis of VR and GD.


Subject(s)
Aryldialkylphosphatase/metabolism , Bacterial Proteins/metabolism , Chemical Warfare Agents/metabolism , Organophosphorus Compounds/metabolism , Antidotes/isolation & purification , Antidotes/metabolism , Antidotes/pharmacology , Aryldialkylphosphatase/genetics , Aryldialkylphosphatase/isolation & purification , Bacillales/enzymology , Bacillales/genetics , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Chemical Warfare Agents/toxicity , Drug Discovery , Drug Evaluation, Preclinical , Haloarcula/enzymology , Haloarcula/genetics , Hydrolysis , Micromonospora/enzymology , Micromonospora/genetics , Organophosphorus Compounds/toxicity , Organothiophosphorus Compounds/metabolism , Organothiophosphorus Compounds/toxicity , Paraoxon/metabolism , Paraoxon/toxicity , Soman/metabolism , Soman/toxicity
3.
Chem Biol Interact ; 203(1): 177-80, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23123254

ABSTRACT

Human paraoxonase-1 (HuPON1) has been proposed as a catalytic bioscavenger of organophosphorus (OP) pesticides and nerve agents. We assessed the potential of this enzyme to protect against OP poisoning using two different paradigms. First, recombinant HuPON1 purified from cabbage loopers (iPON1; Trichoplusia ni) was administered to guinea pigs, followed by exposure to at least 2 times the median lethal dose (LD(50)) of the OP nerve agents tabun (GA), sarin (GB), soman (GD), and cyclosarin (GF), or chlorpyrifos oxon, the toxic metabolite of the OP pesticide chlorpyrifos. In the second model, mice were infected with an adenovirus that induced expression of HuPON1 and then exposed to sequential doses of GD, VX, or (as reported previously) diazoxon, the toxic metabolite of the OP pesticide diazinon. In both animal models, the exogenously added HuPON1 protected animals against otherwise lethal doses of the OP pesticides but not against the nerve agents. Together, the results support prior modeling and in vitro activity data which suggest that wild-type HuPON1 does not have sufficient catalytic activity to provide in vivo protection against nerve agents.


Subject(s)
Aryldialkylphosphatase/administration & dosage , Chemical Warfare Agents/toxicity , Organophosphorus Compounds/toxicity , Pesticides/toxicity , Animals , Antidotes/administration & dosage , Antidotes/pharmacokinetics , Aryldialkylphosphatase/genetics , Aryldialkylphosphatase/isolation & purification , Aryldialkylphosphatase/pharmacokinetics , Chlorpyrifos/analogs & derivatives , Chlorpyrifos/toxicity , Guinea Pigs , Humans , Male , Mice , Moths , Organophosphates/toxicity , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacokinetics , Sarin/toxicity , Soman/toxicity
4.
Proc Natl Acad Sci U S A ; 107(47): 20251-6, 2010 Nov 23.
Article in English | MEDLINE | ID: mdl-21059932

ABSTRACT

The concept of using cholinesterase bioscavengers for prophylaxis against organophosphorous nerve agents and pesticides has progressed from the bench to clinical trial. However, the supply of the native human proteins is either limited (e.g., plasma-derived butyrylcholinesterase and erythrocytic acetylcholinesterase) or nonexisting (synaptic acetylcholinesterase). Here we identify a unique form of recombinant human butyrylcholinesterase that mimics the native enzyme assembly into tetramers; this form provides extended effective pharmacokinetics that is significantly enhanced by polyethylene glycol conjugation. We further demonstrate that this enzyme (but not a G117H/E197Q organophosphorus acid anhydride hydrolase catalytic variant) can prevent morbidity and mortality associated with organophosphorous nerve agent and pesticide exposure of animal subjects of two model species.


Subject(s)
Butyrylcholinesterase/pharmacology , Chemical Warfare Agents/toxicity , Neuroprotective Agents/pharmacology , Nicotiana/metabolism , Organophosphorus Compounds/toxicity , Pesticides/toxicity , Animals , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/pharmacokinetics , Chemical Warfare Agents/metabolism , Chromatography, High Pressure Liquid , Guinea Pigs , Humans , Immunoblotting , Kinetics , Mice , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacokinetics , Organophosphorus Compounds/metabolism , Pesticides/metabolism , Polyethylene Glycols/metabolism , Protein Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...