Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(27): 18360-18369, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38935813

ABSTRACT

2H solid-state NMR and atomistic molecular dynamics (MD) simulations are used to understand the disorder of guest solvent molecules in two cocrystal solvates of the pharmaceutical furosemide. Traditional approaches to interpreting the NMR data fail to provide a coherent model of molecular behavior and indeed give misleading kinetic data. In contrast, the direct prediction of the NMR properties from MD simulation trajectories allows the NMR data to be correctly interpreted in terms of combined jump-type and libration-type motions. Time-independent component analysis of the MD trajectories provides additional insights, particularly for motions that are invisible to NMR. This allows a coherent picture of the dynamics of molecules restricted in molecular-sized cavities to be determined.

2.
Proc Natl Acad Sci U S A ; 121(15): e2319127121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38557191

ABSTRACT

Organic compounds can crystallize in different forms known as polymorphs. Discovery and control of polymorphism is crucial to the pharmaceutical industry since different polymorphs can have significantly different physical properties which impacts their utilization in drug delivery. Certain polymorphs have been reported to 'disappear' from the physical world, irreversibly converting to new ones. These unwanted polymorph conversions, initially prevented by slow nucleation kinetics, are eventually observed driven by significant gains in thermodynamic stabilities. The most infamous of these cases is that of the HIV drug ritonavir (RVR): Once its reluctant form was unwillingly nucleated for the first time, its desired form could no longer be produced with the same manufacturing process. Here we show that RVR's extraordinary disappearing polymorph as well as its reluctant form can be consistently produced by ball-milling under different environmental conditions. We demonstrate that the significant difference in stability between its polymorphs can be changed and reversed in the mill-a process we show is driven by crystal size as well as crystal shape and conformational effects. We also show that those effects can be controlled through careful design of milling conditions since they dictate the kinetics of crystal breakage, dissolution, and growth processes that eventually lead to steady-state crystal sizes and shapes in the mill. This work highlights the huge potential of mechanochemistry in polymorph discovery of forms initially difficult to nucleate, recovery of disappearing polymorphs, and polymorph control of complex flexible drug compounds such as RVR.

3.
J Chem Phys ; 158(24)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37358220

ABSTRACT

Van Vleck's classic theory of the second moment of lineshapes in 1H nuclear magnetic resonance (NMR) is reworked in a form that allows the effect of rapid molecular motion on second moments to be calculated in a semi-analytical fashion. This is much more efficient than existing approaches and also extends previous analyses of (non-dynamic) dipolar networks in terms of site-specific root-sum-square dipolar couplings. The non-local nature of the second moment means that it can discriminate between overall motions that are difficult to discriminate using alternative approaches, such as measurements of NMR relaxation. The value of reviving second moment studies is illustrated on the plastic solids diamantane and triamantane. In the case of triamantane, straightforward measurements of 1H lineshapes on milligram samples show that the molecules in the higher temperature phase undergo multi-axis jumps, information that is not accessible either to diffraction studies or to alternative NMR approaches. The efficiency of the computational methods means that the second moments can be calculated using a readily extensible and open-source Python code.

4.
Phys Chem Chem Phys ; 24(12): 7481-7492, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35274651

ABSTRACT

With rising interest in organic-based functional materials, it is important to understand the nature of magnetic and electrical transitions within these types of systems. One intriguing material is triethylammonium bis-7,7,8,8-tetracyanoquinodimethane (TEA(TCNQ)2) where there is an order-disorder transition at ∼220 K. This work focuses on novel neutron scattering techniques to understand the motion of the TEA cations at this transition and explain why we see the dielectric behaviour and possible ferroelectricity within this type of system. We show that the motion of the methyl groups of the TEA cation is spatially restricted below 220 K, whereas above the dielectric anomaly at 220 K, they are free to re-orientate, which ultimately leads to some rich behaviour that could be further exploited. Lastly, we also study the dynamics at this transition using a variety of additional techniques, helping to provide a consistent picture of the motions of the cations.

5.
Solid State Nucl Magn Reson ; 118: 101783, 2022 04.
Article in English | MEDLINE | ID: mdl-35247851

ABSTRACT

Irbesartan (IRB) is an antihypertensive drug which exhibits the rare phenomenon of desmotropy; its 1H- and 2H- tetrazole tautomers can be isolated as distinct crystalline forms. The crystalline forms of IRB are poorly soluble, hence the amorphous form is potentially of interest for its faster dissolution rate. The tautomeric form and the nature of hydrogen bonding in amorphous IRB are unknown. In this study, crystalline form A and amorphous form of irbesartan were studied using 13C, 15N and 1H solid-state NMR. Variable-temperature 13C SSMNR studies showed alkyl chain disorder in the crystalline form of IRB, which may explain the conflicting literature crystal structures of form A (the marketed form). 15N NMR indicates that the amorphous material contains an approximately 2:1 ratio of 1H- and 2H-tetrazole tautomers. Static 1H SSNMR and relaxation time measurements confirmed different molecular mobilities of the samples and provided molecular-level insight into the nature of the glass transition. SSNMR is shown to be a powerful technique to investigate the solid state of disordered active pharmaceutical ingredients.


Subject(s)
Magnetic Resonance Imaging , Tetrazoles , Hydrogen Bonding , Irbesartan , Magnetic Resonance Spectroscopy/methods
6.
Chem Commun (Camb) ; 58(30): 4767-4770, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35343549

ABSTRACT

The conflict between alternative crystal structures in the Cambridge Structural Database for the diuretic drug indapamide hemihydrate (IND) has been resolved with the aid of 13C solid-state NMR. IND is seen to contain multiple distinct molecules in the asymmetric unit (Z' = 4) rather than exhibiting disorder in the orientation of sulfonamide groups. The NMR crystallographic approach is a more effective tool for distinguishing between alternative structures than naïve judgements of quality based on crystallographic refinement agreement factors.


Subject(s)
Indapamide , Diuretics , Indapamide/chemistry , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
7.
RSC Adv ; 11(33): 20216-20231, 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-35479880

ABSTRACT

The complex chemical functionalization of aldehyde moieties in Cu(ii)- and Co(ii)-pyridinecarboxaldehyde complexes was studied. X-ray studies demonstrated that the aldehyde group (RCHO) of the four pyridine molecules is converted to dihydrogen ortho ester (RC(OCH3)(OH)2) and hemiacetal (RCH(OH)(OCH3)) moieties in both 4-pyridinecarboxaldehyde copper and cobalt complexes. In contrast, the aldehyde group is retained when the 3-pyridinecarboxaldehyde ligand is complexed with cobalt. In the different copper complexes, similar paramagnetic 1H resonance lines were obtained in the solid state; however, the connectivity with the carbon structure and the 1H vicinities were done with 2D 1H-13C HETCOR, 1H-1H SQ/DQ and proton spin diffusion (PSD) experiments. The strong paramagnetic effect exerted by the cobalt center prevented the observation of 13C NMR signals and chemical information could only be obtained from X-ray experiments. 2D PSD experiments in the solid state were useful for the proton assignments in both Cu(ii) complexes. The combination of X-ray crystallography experiments with DFT calculations together with the experimental results obtained from EPR and solid-state NMR allowed the assignment of NMR signals in pyridinecarboxaldehyde ligands coordinated with copper ions. In cases where the crystallographic information was not available, as in the case of the 3-pyridinecarboxaldehyde Cu(ii) complex, the combination of these techniques allowed not only the assignment of NMR signals but also the study of the functionalization of the substituent group.

8.
Prog Nucl Magn Reson Spectrosc ; 118-119: 10-53, 2020.
Article in English | MEDLINE | ID: mdl-32883448

ABSTRACT

Developments of NMR methodology to characterise the structures of molecular organic structures are reviewed, concentrating on the previous decade of research in which density functional theory-based calculations of NMR parameters in periodic solids have become widespread. With a focus on demonstrating the new structural insights provided, it is shown how "NMR crystallography" has been used in a spectrum of applications from resolving ambiguities in diffraction-derived structures (such as hydrogen atom positioning) to deriving complete structures in the absence of diffraction data. As well as comprehensively reviewing applications, the different aspects of the experimental and computational techniques used in NMR crystallography are surveyed. NMR crystallography is seen to be a rapidly maturing subject area that is increasingly appreciated by the wider crystallographic community.

9.
Chemphyschem ; 21(18): 2075-2083, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32691463

ABSTRACT

The factors contributing to the accuracy of quantum-chemical calculations for the prediction of proton NMR chemical shifts in molecular solids are systematically investigated. Proton chemical shifts of six solid amino acids with hydrogen atoms in various bonding environments (CH, CH2 , CH3 , OH, SH and NH3 ) were determined experimentally using ultra-fast magic-angle spinning and proton-detected 2D NMR experiments. The standard DFT method commonly used for the calculations of NMR parameters of solids is shown to provide chemical shifts that deviate from experiment by up to 1.5 ppm. The effects of the computational level (hybrid DFT functional, coupled-cluster calculation, inclusion of relativistic spin-orbit coupling) are thoroughly discussed. The effect of molecular dynamics and nuclear quantum effects are investigated using path-integral molecular dynamics (PIMD) simulations. It is demonstrated that the accuracy of the calculated proton chemical shifts is significantly better when these effects are included in the calculations.

10.
Chem Sci ; 11(11): 2987-2992, 2020 Feb 24.
Article in English | MEDLINE | ID: mdl-34122800

ABSTRACT

Alternative ('repeat') determinations of organic crystal structures deposited in the Cambridge Structural Database are analysed to characterise the nature and magnitude of the differences between structure solutions obtained by diffraction methods. Of the 3132 structure pairs considered, over 20% exhibited local structural differences exceeding 0.25 Å. In most cases (about 83%), structural optimisation using density functional theory (DFT) resolved the differences. Many of the cases where distinct and chemically significant structural differences remained after optimisation involved differently positioned hydroxyl groups, with obvious implications for the correct description of hydrogen bonding. 1H and 13C chemical shifts from solid-state NMR experiments are proposed as an independent methodology in cases where DFT optimisation fails to resolve discrepancies.

11.
Faraday Discuss ; 212(0): 331-344, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30234207

ABSTRACT

It has been hypothesised that proton tunnelling between paired nucleobases significantly enhances the formation of rare tautomeric forms and hence leads to errors in DNA replication. Here, we study nuclear quantum effects (NQEs) using deuterium isotope-induced changes of nitrogen NMR chemical shifts in a model base pair consisting of two tautomers of isocytosine, which form hydrogen-bonded dimers in the same way as the guanine-cytosine base pair. Isotope effects in NMR are consequences of NQEs, because ro-vibrational averaging of different isotopologues gives rise to different magnetic shielding of the nuclei. The experimental deuterium-induced chemical shift changes are compared with those calculated by a combination of path integral molecular dynamics (PIMD) simulations with DFT calculations of nuclear shielding. These calculations can directly link the observable isotope-induced shifts with NQEs. A comparison of the deuterium-induced changes of 15N chemical shifts with those predicted by PIMD simulations shows that inter-base proton transfer reactions do not take place in this system. We demonstrate, however, that NMR isotope shifts provide a unique possibility to study NQEs and to evaluate the accuracy of the computational methods used for modelling quantum effects in molecules. Calculations based on the PBE functional from the general-gradient-approximation family provided significantly worse predictions of deuterium isotope shifts than those with the hybrid B3LYP functional.

12.
J Chem Phys ; 149(4): 040901, 2018 Jul 28.
Article in English | MEDLINE | ID: mdl-30068173

ABSTRACT

In contrast to the rapid and revolutionary impact of solution-state Nuclear Magnetic Resonance (NMR) on modern chemistry, the field of solid-state NMR has matured more slowly. This reflects the major technical challenges of much reduced spectral resolution and sensitivity in solid-state as compared to solution-state spectra, as well as the relative complexity of the solid state. In this perspective, we outline the technique developments that have pushed resolution to intrinsic limits and the approaches, including ongoing major developments in the field of Dynamic Nuclear Polarisation, that have enhanced spectral sensitivity. The information on local structure and dynamics that can be obtained using these gains in sensitivity and resolution is illustrated with a diverse range of examples from large biomolecules to energy materials and pharmaceuticals and from both ordered and highly disordered materials. We discuss how parallel developments in quantum chemical calculation, particularly density functional theory, have enabled experimental data to be translated directly into information on local structure and dynamics, giving rise to the developing field of "NMR crystallography."

13.
Chem Sci ; 9(46): 8631-8636, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30647882

ABSTRACT

Dynamic covalent rearrangements of fluxional carbon cages, such as bullvalenes and barbaralanes, impart 'shapeshifting' molecular properties. Here, a series of five barbaralanes each interconvert dynamically between two constitutional isomers in solution, but resolve to single isomers upon crystallisation. Unexpectedly, the minor solution-phase isomers are resolved in two instances. Through dynamic NMR, crystallographic and DFT analyses, we show that the isomer observed in the solid state is not a direct consequence of the equilibrium distribution in solution or any specific noncovalent interactions. Rather, the dynamic preferential crystallisation is dictated by differences in molecular size and shape.

14.
J Phys Chem A ; 121(21): 4103-4113, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28475331

ABSTRACT

Previous studies have revealed significant discrepancies between density functional theory (DFT)-calculated and experimental nuclear quadrupolar coupling constants (CQ) for chlorine atoms, particularly in ionic solids. Various aspects of the computations are systematically investigated here, including the choice of the DFT functional, basis set convergence, and geometry optimization protocol. The effects of fast (fs) time-scale dynamics are probed using molecular dynamics (MD) and nuclear quantum effects (NQEs) are considered using path-integral MD calculations. It is shown that the functional choice is the most important factor related to improving the accuracy of the quadrupolar coupling calculations, and that functionals beyond the generalized gradient approximation (GGA) level, such as hybrid and meta-GGA functionals, are required for good correlations with experiment. The influence of molecular dynamics and NQEs is less important than the functional choice in the studied systems. A method which involves scaling the calculated quadrupolar coupling constant is proposed here; its application leads to good agreement with experimental data.

15.
Acta Crystallogr C Struct Chem ; 73(Pt 3): 168-175, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28257010

ABSTRACT

Naproxen (NPX) is a nonsteroidal anti-inflammatory drug with pain- and fever-relieving properties, currently marketed in the sodium salt form to overcome solubility problems; however, alternative solutions for improving its solubility across all pH values are desirable. NPX is suitable for cocrystal formation, with hydrogen-bonding possibilities via the COOH group. The crystal structure is presented of a 1:1 cocrystal of NPX with picolinamide as a coformer [systematic name: (S)-2-(6-methoxynaphthalen-2-yl)propanoic acid-pyridine-2-carboxamide (1/1), C14H14O3·C6H6N2O]. The pharmaceutically relevant physical properties were investigated and the intrinsic dissolution rate was found to be essentially the same as that of commercial naproxen. An NMR crystallography approach was used to investigate the H-atom positions in the two crystallographically unique COOH-CONH hydrogen-bonded dimers. 1H solid-state NMR distinguished the two carboxyl protons, despite the very similar crystallographic environments. The nature of the hydrogen bonding was confirmed by solid-state NMR and density functional theory calculations.

16.
Chemphyschem ; 18(4): 394-405, 2017 Feb 17.
Article in English | MEDLINE | ID: mdl-28111874

ABSTRACT

Factors affecting the performance of 1 H heteronuclear decoupling sequences for magic-angle spinning (MAS) NMR spectroscopy of organic solids are explored, as observed by time constants for the decay of nuclear magnetisation under a spin-echo (T2' ). By using a common protocol over a wide range of experimental conditions, including very high magnetic fields and very high radio-frequency (RF) nutation rates, decoupling performance is observed to degrade consistently with increasing magnetic field. Inhomogeneity of the RF field is found to have a significant impact on T2' values, with differences of about 20 % observed between probes with different coil geometries. Increasing RF nutation rates dramatically improve robustness with respect to RF offset, but the performance of phase-modulated sequences degrades at the very high nutation rates achievable in microcoils as a result of RF transients. The insights gained provide better understanding of the factors limiting decoupling performance under different conditions, and the high values of T2' observed (which generally exceed previous literature values) provide reference points for experiments involving spin magnetisation refocussing, such as 2D correlation spectra and measuring small spin couplings.

17.
Solid State Nucl Magn Reson ; 78: 64-70, 2016 09.
Article in English | MEDLINE | ID: mdl-27435606

ABSTRACT

We introduce two open source tools to aid the processing and visualisation of ab-initio computed solid-state NMR parameters. The Magres file format for computed NMR parameters (as implemented in CASTEP v8.0 and QuantumEspresso v5.0.0) is implemented. MagresView is built upon the widely used Jmol crystal viewer, and provides an intuitive environment to display computed NMR parameters. It can provide simple pictorial representation of one- and two-dimensional NMR spectra as well as output a selected spin-system for exact simulations with dedicated spin-dynamics software. MagresPython provides a simple scripting environment to manipulate large numbers of computed NMR parameters to search for structural correlations.

18.
J Colloid Interface Sci ; 476: 20-28, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27179175

ABSTRACT

The technique of stray field diffusion NMR is adapted to study the diffusion properties of water in monodisperse wet foams. We show for the first time, that the technique is capable of observing q-space diffusion diffraction peaks in monodisperse aqueous foams with initial bubble sizes in the range of 50-85µm. The position of the peak maximum can be correlated simply to the bubble size in the foam leading to a technique that can investigate the stability of the foam over time. The diffusion technique, together with supplementary spin-spin relaxation analysis of the diffusion data is used to follow the stability and coarsening behaviour of monodisperse foams with a water fraction range between 0.24 and 0.33. The monodisperse foams remain stable for a period of hours in terms of the initial bubble size. The duration of this stable period correlates to the initial size of the bubbles. Eventually the bubbles begin to coarsen and this is observed in changes in the position of the diffusion diffraction maxima.

19.
Chem Commun (Camb) ; 52(40): 6685-8, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27115483

ABSTRACT

The potential of NMR crystallography to verify molecular crystal structures deposited in structural databases is evaluated, with two structures of the pharmaceutical furosemide serving as examples. While the structures differ in the placement of one H atom, using this approach, we verify one of the structures in the Cambridge Structural Database using quantitative tools, while establishing that the other structure does not meet the verification criteria.


Subject(s)
Furosemide/chemistry , Hydrogen/chemistry , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Powders
20.
J Chem Theory Comput ; 12(3): 968-73, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26857802

ABSTRACT

The influence of temperature on NMR chemical shifts and quadrupolar couplings in model molecular organic solids is explored using path integral molecular dynamics (PIMD) and density functional theory (DFT) calculations of shielding and electric field gradient (EFG) tensors. An approach based on convoluting calculated shielding or EFG tensor components with probability distributions of selected bond distances and valence angles obtained from DFT-PIMD simulations at several temperatures is used to calculate the temperature effects. The probability distributions obtained from the quantum PIMD simulations, which includes nuclear quantum effects, are significantly broader and less temperature dependent than those obtained with conventional DFT molecular dynamics or with 1D scans through the potential energy surface. Predicted NMR observables for the model systems were in excellent agreement with experimental data.

SELECTION OF CITATIONS
SEARCH DETAIL
...