Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(10): e2317832121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38412136

ABSTRACT

Non-Newtonian fluids can be used for the protection of flexible laminates. Understanding the coupling between the flow of the protecting fluid and the deformation of the protected solids is necessary in order to optimize this functionality. We present a scaling analysis of the problem based on a single coupling variable, the effective width of a squeeze flow between flat rigid plates, and predict that impact protection for laminates is optimized by using shear-thinning, and not shear-thickening, fluids. The prediction is verified experimentally by measuring the velocity and pressure in impact experiments. Our scaling analysis should be generically applicable for non-Newtonian fluid-solid interactions in diverse applications.

2.
Rheol Acta ; 61(8-9): 571-581, 2022.
Article in English | MEDLINE | ID: mdl-35811745

ABSTRACT

The handleability and sensory perception of hand sanitisers by consumers affect the hygiene outcome. Spillage may result in under-dosing and poor sensory properties can lead to under-utilisation. We first propose four principles (low runoff, spreadability, smoothness and non-stickiness) for designing the rheology of thickened alcohol-based hand rubs with acceptable handleability and hand feel. We then evaluate a commercial hand gel and a variety of simplified formulations thickened with microgels (Carbopol 974P, Carbopol Ultrez 20 and Sepimax Zen), or linear polymers (Jaguar HP 120 COS), and evaluate them against these design criteria. All four additives provide acceptable spreadability by shear thinning to η ≈ 10 - 1 Pa s at γ ˙ ∼ 10 3 s - 1 . Either the finite yield stress conferred by the microgels ( σ y ≳ 10 Pa ) or the increase in low-shear viscosity provided by the linear polymer ( η ≳ 1 Pa s at γ ˙ ≲ 0.1 s - 1 ) give rise to acceptably low runoff. However, the formulation using the linear polymer shows a filament breakage time of τ b ≈ 1 s in capillary rheology, which may result in stickiness and therefore a less than optimal hand feel.

3.
Soft Matter ; 16(36): 8310-8324, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32909024

ABSTRACT

Much of the science underpinning the global response to the COVID-19 pandemic lies in the soft matter domain. Coronaviruses are composite particles with a core of nucleic acids complexed to proteins surrounded by a protein-studded lipid bilayer shell. A dominant route for transmission is via air-borne aerosols and droplets. Viral interaction with polymeric body fluids, particularly mucus, and cell membranes controls their infectivity, while their interaction with skin and artificial surfaces underpins cleaning and disinfection and the efficacy of masks and other personal protective equipment. The global response to COVID-19 has highlighted gaps in the soft matter knowledge base. We survey these gaps, especially as pertaining to the transmission of the disease, and suggest questions that can (and need to) be tackled, both in response to COVID-19 and to better prepare for future viral pandemics.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Disinfection , Humans , Mucus/virology , Nanoparticles/chemistry , Pandemics , Personal Protective Equipment , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , SARS-CoV-2 , Surface Properties
4.
Proc Natl Acad Sci U S A ; 116(21): 10303-10308, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31064872

ABSTRACT

The mixing of a powder of 10- to 50-µm primary particles into a liquid to form a dispersion with the highest possible solid content is a common industrial operation. Building on recent advances in the rheology of such "granular dispersions," we study a paradigmatic example of such powder incorporation: the conching of chocolate, in which a homogeneous, flowing suspension is prepared from an inhomogeneous mixture of particulates, triglyceride oil, and dispersants. Studying the rheology of a simplified formulation, we find that the input of mechanical energy and staged addition of surfactants combine to effect a considerable shift in the jamming volume fraction of the system, thus increasing the maximum flowable solid content. We discuss the possible microscopic origins of this shift, and suggest that chocolate conching exemplifies a ubiquitous class of powder-liquid mixing.

SELECTION OF CITATIONS
SEARCH DETAIL
...