Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(2): e11028, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38405406

ABSTRACT

It has long been recognized that mass loss during breeding could be adaptive (e.g., by ameliorating the costs of increased parental activity). However, many studies still commonly interpret mass loss as evidence of "stress" or a cost of reproduction (i.e., a negative effect of high workload during chick provisioning). Despite several studies reporting evidence in support of both hypotheses, the ecological and/or life-history contexts under which mass loss may be viewed as a "cost" or an adaptive strategy are still unclear. Here, we used a long-term dataset from a breeding population of European starlings (Sturnus vulgaris) to investigate natural annual and individual variation in body mass and mass loss and to test whether mass loss during chick rearing represents a phenotypically plastic trait that varies predictably in relation to ecological context and individual quality. While there was significant annual variation in incubation mass, chick-rearing mass, and mass change, there were no systematic relationships between mass loss and current breeding success or future fecundity and survival. In addition, we found no evidence of intra-annual repeatability of mass loss between first and second broods ( = .00) but moderate interannual repeatability of mass loss (R = .61) during first broods, suggesting differences in mass loss under different selective pressures. However, we found no covariation between residual intra-individual variation in mass loss for first broods and other reproductive or life-history traits. We therefore found no support for the idea that mass loss reflects "reproductive stress" in our system: there were no negative relationships between mass loss and either current or future reproduction and survival (local return rate). Our results are consistent with mass loss being an individually plastic trait, with individuals using mass loss to "level the playing field" and individually optimize reproductive effort and fitness within their specific ecological context and relative to their individual quality for a given breeding attempt.

2.
J Exp Biol ; 226(14)2023 07 15.
Article in English | MEDLINE | ID: mdl-37387253

ABSTRACT

Despite the potential for temporally dependent relationships between trait values and fitness (e.g. as juveniles approach life-stage transitions such as fledging), how developmental stage affects canalization (a measure of robustness to environmental variation) of morphological and physiological traits is rarely considered. To test the sensitivity of morphological and physiological traits to environmental variation in two developmental stages, we manipulated brood size at hatch in European starlings (Sturnus vulgaris) and cross-fostered chicks between enlarged and reduced broods approaching fledging. We measured body size (mass, tarsus, wing length) and physiological state (aerobic capacity, oxidative status) at asymptotic mass on day 15, then cross-fostered chicks between 'high' and 'low' quality environments and assessed the same traits again on day 20, after 5 days of pre-fledging mass recession. Chicks in reduced broods were heavier at asymptotic mass and had lower reactive oxygen metabolites than enlarged broods, whereas structural size, aerobic capacity and antioxidant capacity were unaffected by experimental brood size. The observed canalization of structural and physiological traits during early development was maintained after cross-fostering, during late development. However, in contrast to early development, antioxidant capacity approaching fledging appeared sensitive to environmental conditions, as trajectories varied by cross-fostering treatment. Elevated reactive oxygen metabolites observed after early development in enlarged brood chicks were maintained after cross-fostering, suggesting that canalized development in low-quality environments could produce oxidative costs that carry over between life stages, even when conditions improve. These data reveal trait-specific relationships between environmental conditions and development, and highlight how natal environment effects may vary by developmental stage.


Subject(s)
Antioxidants , Starlings , Animals , Starlings/physiology , Body Size , Oxidation-Reduction , Oxidative Stress
3.
R Soc Open Sci ; 9(6): 220583, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35706664

ABSTRACT

Recent studies have reported beneficial carryover effects of juvenile development that predict interspecific survival differences at independence. Yet, traits relating to body size (i.e. morphological traits) have proven to be unreliable predictors of juvenile survival within species. Exploring individual variation of growth trajectories and how they covary with physiology could reveal species-specific developmental modes which have implications for our assessments of juvenile quality. Here, we investigated morphological development of European starlings (Sturnus vulgaris) approaching fledging in relation to three components of physiological condition at independence: aerobic capacity, energy state and oxidative status. We found evidence of flexible mass and wing growth which independently covaried with fledgling energy state and aerobic capacity, respectively. By comparison, tarsus and wing length at fledging were unrelated to any physiological trait, while mass was positively associated with principal component scores that comprised aerobic capacity and energy state. Thus, flexible growth trajectories were consistent with 'developmental plasticity': adaptive pre-fledging mass recession and compensatory wing growth, which seemingly came at a physiological cost, while fledgling body mass positively reflected overall physiological condition. This highlights how patterns of growth and absolute size may differently reflect fledgling physiology, potentially leading to variable relationships between morphological traits and juvenile fitness.

4.
J Exp Biol ; 224(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-33692076

ABSTRACT

Sleep loss impairs cognitive function, immunological responses and general well-being in humans. However, sleep requirements in mammals and birds vary dramatically. In circumpolar regions with continuous summer light, daily sleep duration is reduced, particularly in breeding birds. The effect of an anti-narcolepsy drug (modafinil) to putatively extend wakefulness was examined in two species of closely related arctic-breeding passerine birds: Lapland longspurs (Calcarius lapponicus) and snow buntings (Plectrophenax nivalis). Free-living adult males were implanted during the nestling phase on day 4 (D4; 4 days post-hatching) with osmotic pumps containing either vehicle or modafinil to extend the active period for 72 h. Nestlings were weighed on D2 and D7 to measure growth rates. Additionally, focal observations were conducted on D6. Male longspurs receiving modafinil made fewer feeding visits and spent less time at the nest but tended to spend more time near the nest than controls. We observed no change in longspur nestling growth rates, but fledging occurred significantly later when males received modafinil, suggesting a fitness cost. In contrast, modafinil had no measurable impact on male or female snow bunting behavior, nestling growth rates or time to fledging. We suggest male longspurs compromise and maintain vigilance at their nests in lieu of sleeping because of the increased predation risk that is characteristic of their tundra nesting habitat. Snow buntings are cavity nesters, and their nests do not require the same vigilance, allowing males to presumably rest following provisioning. These life-history differences between species highlight the role of predation risk in mediating behavioral modifications to prolonged wakefulness in arctic-breeding songbirds.


Subject(s)
Passeriformes , Pharmaceutical Preparations , Songbirds , Activity Cycles , Animals , Arctic Regions , Female , Humans , Male , Nesting Behavior
5.
Horm Behav ; 122: 104764, 2020 06.
Article in English | MEDLINE | ID: mdl-32380084

ABSTRACT

Sleep is a fundamental component of vertebrate life, although its exact functions remain unclear. Animals deprived of sleep typically show reduced neurobiological performance, health, and in some cases, survival. However, a number of vertebrate taxa exhibit adaptations that permit normal activities even when sleep is reduced. Lapland longspurs (Calcarius lapponicus), arctic-breeding passerine birds, exhibit around-the-clock activity during their short breeding season, with an inactive period of ca. 4 h/day. Whether behavioral or physiological costs occur from sleep loss (SL) in this species is unknown. To assess the effects of SL, wild-caught male longspurs were placed in captivity (12L:12D) and trained for one month to successfully learn color association and spatial memory tasks. Birds were then placed in automated sleep fragmentation cages that utilize a moving wire to force movement every 1 min (60 arousals/h) during 12D (inactive period) or control conditions (during 12L; active period). After SL (or control) treatment, birds were presented with color association and spatial memory tasks a final time to assess executive function. Baseline plasma corticosterone concentration, body mass, and satiety were also measured. SL significantly elevated corticosterone levels and increased accuracy during color association recall but did not affect the overall time required to complete the task. SL had no effect upon spatial memory, body mass, or satiety. Taken together, these results suggest that Lapland longspurs exhibit a degree of behavioral, but not physiological, insensitivity to acute SL. Whether elevated plasma concentrations of corticosterone play a direct role in ameliorating cognitive deficits from SL require additional study.


Subject(s)
Corticosterone/blood , Executive Function/physiology , Sleep Deprivation/blood , Sleep Deprivation/psychology , Songbirds/physiology , Animals , Arctic Regions , Female , Male , Passeriformes/blood , Passeriformes/physiology , Reproduction/physiology , Seasons , Sleep/physiology , Sleep Deprivation/physiopathology , Sleep Deprivation/veterinary , Songbirds/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...