Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 820738, 2022.
Article in English | MEDLINE | ID: mdl-35391738

ABSTRACT

Spatiotemporal structures and heterogeneities are common in natural habitats, yet their role in the evolution of antibiotic resistance is still to be uncovered. We applied a microfluidic gradient generator device to study the emergence of resistant bacteria in spatial ciprofloxacin gradients. We observed biofilm formation in regions with sub-inhibitory concentrations of antibiotics, which quickly expanded into the high antibiotic regions. In the absence of an explicit structure of the habitat, this multicellular formation led to a spatial structure of the population with local competition and limited migration. Therefore, such structures can function as amplifiers of selection and aid the spread of beneficial mutations. We found that the physical environment itself induces stress-related mutations that later prove beneficial when cells are exposed to antibiotics. This shift in function suggests that exaptation occurs in such experimental scenarios. The above two processes pave the way for the subsequent emergence of highly resistant specific mutations.

2.
Biomicrofluidics ; 9(4): 044105, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26339306

ABSTRACT

Quorum sensing and chemotaxis both affect bacterial behavior on the population level. Chemotaxis shapes the spatial distribution of cells, while quorum sensing realizes a cell-density dependent gene regulation. An interesting question is if these mechanisms interact on some level: Does quorum sensing, a density dependent process, affect cell density itself via chemotaxis? Since quorum sensing often spans across species, such a feedback mechanism may also exist between multiple species. We constructed a microfluidic platform to study these questions. A flow-free, stable linear chemical gradient is formed in our device within a few minutes that makes it suitable for sensitive testing of chemoeffectors: we showed that the amino acid lysine is a weak chemoattractant for Escherichia coli, while arginine is neutral. We studied the effect of quorum sensing signal molecules of Pseudomonas aeruginosa on E. coli chemotaxis. Our results show that N-(3-oxododecanoyl)-homoserine lactone (oxo-C12-HSL) and N-(butryl)-homoserine lactone (C4-HSL) are attractants. Furthermore, we tested the chemoeffector potential of pyocyanin and pyoverdine, secondary metabolites under a quorum sensing control. Pyocyanin is proved to be a weak attractant while pyoverdine are repellent. We demonstrated the usability of the device in co-culturing experiments, where we showed that various factors released by P. aeruginosa affect the dynamic spatial rearrangement of a neighboring E. coli population, while surface adhesion of the cells is also modulated.

SELECTION OF CITATIONS
SEARCH DETAIL
...