Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS One ; 16(7): e0254416, 2021.
Article in English | MEDLINE | ID: mdl-34324511

ABSTRACT

Biodiversity conservation planning requires accurate, current information about species status and threats. Although introduced mammals are the greatest threat to seabirds globally, data on introduced species is lacking for many seabird breeding islands. To inform conservation planning, we used trail cameras to document the presence, relative abundance, and seasonal and diel attendance of introduced and native vertebrates within pink-footed shearwater (Ardenna creatopus) breeding colonies on Isla Mocha (five colonies, 2015-2020) and Isla Robinson Crusoe (Juan Fernández Archipelago), Chile (one colony, 2019-2020). The most commonly detected species were pink-footed shearwaters and introduced rats (Rattus spp.) on Isla Mocha, and European rabbits (Oryctolagus cuniculus) and pink-footed shearwaters on Isla Robinson Crusoe. Introduced mammals observed, in order of greatest catch-per-unit-effort, were rats, cats (Felis catus), dogs (Canis lupus familiaris), and European hares (Lepus europaeus) on Isla Mocha and European rabbits, cats, cattle (Bos taurus), rats, dogs, mice (Mus musculus), and southern coati (Nasua nasua) on Isla Robinson Crusoe. Especially noteworthy results for pink-footed shearwater conservation were the presence of cats during all monitoring months in shearwater colonies on both islands, that catch-per-unit-effort of rabbits was greater than shearwaters on Isla Robinson Crusoe, and that rats were the most observed vertebrates after shearwaters on Isla Mocha. Pink-footed shearwaters were regularly present on the islands from October through May. Presence and relative catch-per-unit-effort of pink-footed shearwaters qualitatively matched the species' known breeding phenology. The regular presence and temporal overlap with shearwaters of cats, rats, rabbits, and cattle within shearwater colonies, coupled with the irregular presence of dogs, coati, hares, and mice, indicated a serious conservation threat for pink-footed shearwaters and other native insular fauna and flora. Finally, our study provides a widely applicable model for analysis of multi-year trail camera data collected with unstandardized settings.


Subject(s)
Biodiversity , Introduced Species , Chile , Ecosystem
2.
Sci Adv ; 7(10)2021 03.
Article in English | MEDLINE | ID: mdl-33658194

ABSTRACT

Migratory marine species cross political borders and enter the high seas, where the lack of an effective global management framework for biodiversity leaves them vulnerable to threats. Here, we combine 10,108 tracks from 5775 individual birds at 87 sites with data on breeding population sizes to estimate the relative year-round importance of national jurisdictions and high seas areas for 39 species of albatrosses and large petrels. Populations from every country made extensive use of the high seas, indicating the stake each country has in the management of biodiversity in international waters. We quantified the links among national populations of these threatened seabirds and the regional fisheries management organizations (RFMOs) which regulate fishing in the high seas. This work makes explicit the relative responsibilities that each country and RFMO has for the management of shared biodiversity, providing invaluable information for the conservation and management of migratory species in the marine realm.

3.
PLoS One ; 15(11): e0240056, 2020.
Article in English | MEDLINE | ID: mdl-33166314

ABSTRACT

We tested the hypothesis that segregation in wintering areas is associated with population differentiation in a sentinel North Pacific seabird, the rhinoceros auklet (Cerorhinca monocerata). We collected tissue samples for genetic analyses on five breeding colonies in the western Pacific Ocean (Japan) and on 13 colonies in the eastern Pacific Ocean (California to Alaska), and deployed light-level geolocator tags on 12 eastern Pacific colonies to delineate wintering areas. Geolocator tags were deployed previously on one colony in Japan. There was strong genetic differentiation between populations in the eastern vs. western Pacific Ocean, likely due to two factors. First, glaciation over the North Pacific in the late Pleistocene might have forced a southward range shift that historically isolated the eastern and western populations. And second, deep-ocean habitat along the northern continental shelf appears to act as a barrier to movement; abundant on both sides of the North Pacific, the rhinoceros auklet is virtually absent as a breeder in the Aleutian Islands and Bering Sea, and no tagged birds crossed the North Pacific in the non-breeding season. While genetic differentiation was strongest between the eastern vs. western Pacific, there was also extensive differentiation within both regional groups. In pairwise comparisons among the eastern Pacific colonies, the standardized measure of genetic differentiation (FꞌST) was negatively correlated with the extent of spatial overlap in wintering areas. That result supports the hypothesis that segregation in the non-breeding season is linked to genetic structure. Philopatry and a neritic foraging habit probably also contribute to the structuring. Widely distributed, vulnerable to anthropogenic stressors, and exhibiting extensive genetic structure, the rhinoceros auklet is fully indicative of the scope of the conservation challenges posed by seabirds.


Subject(s)
Animal Migration/physiology , Charadriiformes/genetics , Conservation of Natural Resources , Genetic Variation/genetics , Social Isolation , Animals , Birds , Breeding , Charadriiformes/physiology , Ecosystem , Genetics, Population , Geography , Pacific Ocean , Population Dynamics
4.
PLoS One ; 14(3): e0212128, 2019.
Article in English | MEDLINE | ID: mdl-30917126

ABSTRACT

Invasive alien species are a major threat to native insular species. Eradicating invasive mammals from islands is a feasible and proven approach to prevent biodiversity loss. We developed a conceptual framework to identify globally important islands for invasive mammal eradications to prevent imminent extinctions of highly threatened species using biogeographic and technical factors, plus a novel approach to consider socio-political feasibility. We applied this framework using a comprehensive dataset describing the distribution of 1,184 highly threatened native vertebrate species (i.e. those listed as Critically Endangered or Endangered on the IUCN Red List) and 184 non-native mammals on 1,279 islands worldwide. Based on extinction risk, irreplaceability, severity of impact from invasive species, and technical feasibility of eradication, we identified and ranked 292 of the most important islands where eradicating invasive mammals would benefit highly threatened vertebrates. When socio-political feasibility was considered, we identified 169 of these islands where eradication planning or operation could be initiated by 2020 or 2030 and would improve the survival prospects of 9.4% of the Earth's most highly threatened terrestrial insular vertebrates (111 of 1,184 species). Of these, 107 islands were in 34 countries and territories and could have eradication projects initiated by 2020. Concentrating efforts to eradicate invasive mammals on these 107 islands would benefit 151 populations of 80 highly threatened vertebrates and make a major contribution towards achieving global conservation targets adopted by the world's nations.


Subject(s)
Conservation of Natural Resources/methods , Introduced Species/trends , Animals , Biodiversity , Endangered Species , Extinction, Biological , Islands , Mammals
5.
Environ Pollut ; 239: 215-222, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29655068

ABSTRACT

We assessed the potential role played by two vital Northeastern Pacific Ocean forage fishes, the Pacific sand lance (Ammodytes personatus) and Pacific herring (Clupea pallasii), as conduits for the vertical transfer of microfibres in food webs. We quantified the number of microfibres found in the stomachs of 734 sand lance and 205 herring that had been captured by an abundant seabird, the rhinoceros auklet (Cerorhinca monocerata). Sampling took place on six widely-dispersed breeding colonies in British Columbia, Canada, and Washington State, USA, over one to eight years. The North Pacific Ocean is a global hotspot for pollution, yet few sand lance (1.5%) or herring (2.0%) had ingested microfibres. In addition, there was no systematic relationship between the prevalence of microplastics in the fish stomachs vs. in waters around three of our study colonies (measured in an earlier study). Sampling at a single site (Protection Island, WA) in a single year (2016) yielded most (sand lance) or all (herring) of the microfibres recovered over the 30 colony-years of sampling involved in this study, yet no microfibres had been recovered there, in either species, in the previous year. We thus found no evidence that sand lance and herring currently act as major food-web conduits for microfibres along British Columbia's outer coast, nor that the local at-sea density of plastic necessarily determines how much plastic enters marine food webs via zooplanktivores. Extensive urban development around the Salish Sea probably explains the elevated microfibre loads in fishes collected on Protection Island, but we cannot account for the between-year variation. Nonetheless, the existence of such marked interannual variation indicates the importance of measuring year-to-year variation in microfibre pollution both at sea and in marine biota.


Subject(s)
Charadriiformes/metabolism , Environmental Pollution/analysis , Food Chain , Perciformes/metabolism , Plastics/analysis , Animals , British Columbia , Fishes , Pacific Ocean , Washington
6.
Conserv Biol ; 31(5): 986-1001, 2017 10.
Article in English | MEDLINE | ID: mdl-28151557

ABSTRACT

Artificial lights at night cause high mortality of seabirds, one of the most endangered groups of birds globally. Fledglings of burrow-nesting seabirds, and to a lesser extent adults, are attracted to and then grounded (i.e., forced to land) by lights when they fly at night. We reviewed the current state of knowledge of seabird attraction to light to identify information gaps and propose measures to address the problem. Although species in families such as Alcidae and Anatidae can be grounded by artificial light, the most affected seabirds are petrels and shearwaters (Procellariiformes). At least 56 species of Procellariiformes, more than one-third of them (24) threatened, are subject to grounding by lights. Seabirds grounded by lights have been found worldwide, mainly on oceanic islands but also at some continental locations. Petrel breeding grounds confined to formerly uninhabited islands are particularly at risk from light pollution due to tourism and urban sprawl. Where it is impractical to ban external lights, rescue programs of grounded birds offer the most immediate and employed mitigation to reduce the rate of light-induced mortality and save thousands of birds every year. These programs also provide useful information for seabird management. However, these data are typically fragmentary, biased, and uncertain and can lead to inaccurate impact estimates and poor understanding of the phenomenon of seabird attraction to lights. We believe the most urgently needed actions to mitigate and understand light-induced mortality of seabirds are estimation of mortality and effects on populations; determination of threshold light levels and safe distances from light sources; documentation of the fate of rescued birds; improvement of rescue campaigns, particularly in terms of increasing recovery rates and level of care; and research on seabird-friendly lights to reduce attraction.


Subject(s)
Birds , Conservation of Natural Resources , Light , Animals , Environment Design , Environmental Pollution , Islands , Mortality , Oceans and Seas
7.
Mar Pollut Bull ; 116(1-2): 143-150, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28063702

ABSTRACT

We found microplastic in 89.5% of 143 Northern Fulmars from 2008 to 2013 and 64% of 25 Sooty Shearwaters in 2011-2012 that were found dead or stranded on Oregon and Washington beaches. Average plastic loads were 19.5 pieces and 0.461g for fulmars and 13.3 pieces and 0.335g for shearwaters. Pre-manufactured plastic pellets accounted for 8.5% of fulmar and 33% of shearwater plastic pieces. In both species, plastic in proventriculi averaged 2-3mm larger in greatest dimension than in ventriculi. Intestinal plastic in fulmars averaged 1mm less in greatest dimension than ventricular plastic. There was no significant reduction in pieces or mass of plastic in 33 fulmars held for a median of seven days in a plastic-free environment. Three fulmars that survived to be released from rehabilitation regurgitated plastic, which provided an alternative outlet for elimination of plastic and requires reassessment of the dynamics of plastic in seabird gastrointestinal tracts.


Subject(s)
Birds , Environmental Monitoring , Gastrointestinal Contents , Plastics , Animals , Gastrointestinal Tract , Oregon , Washington
8.
PeerJ ; 3: e704, 2015.
Article in English | MEDLINE | ID: mdl-25653898

ABSTRACT

Seabirds have been identified and used as indicators of ecosystem processes such as climate change and human activity in nearshore ecosystems around the globe. Temporal and spatial trends have been documented at large spatial scales, but few studies have examined more localized patterns of spatiotemporal variation, by species or functional group. In this paper, we apply spatial occupancy models to assess the spatial patchiness and interannual trends of 18 seabird species in the Puget Sound region (Washington State, USA). Our dataset, the Puget Sound Seabird Survey of the Seattle Audubon Society, is unique in that it represents a seven-year study, collected with a focus on winter months (October-April). Despite historic declines of seabirds in the region over the last 50 years, results from our study are optimistic, suggesting increases in probabilities of occurrence for 14 of the 18 species included. We found support for declines in occurrence for white-winged scoters, brants, and 2 species of grebes. The decline of Western grebes in particular is troubling, but in agreement with other recent studies that have shown support for a range shift south in recent years, to the southern end of California Current.

9.
Mar Pollut Bull ; 86(1-2): 367-378, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25103902

ABSTRACT

Organochlorine contaminants in upper trophic-level consumers inhabiting Puget Sound are consistently higher than in those species inhabiting other west coast locations. We analyzed persistent organic pollutants (POPs) in the six most common fish prey of rhinoceros auklets breeding on Protection Island (Puget Sound), Tatoosh Island (WA coast), and Destruction Island (WA coast). Wet-weight concentrations of POPs ranged widely (PCBs: 1.6-25.0 ng/g; DDTs: 0.2-56.0 ng/g; PBDEs:

Subject(s)
Charadriiformes/physiology , DDT/metabolism , Environmental Pollutants/metabolism , Food Chain , Halogenated Diphenyl Ethers/metabolism , Polychlorinated Biphenyls/metabolism , Salmon/metabolism , Animals , Body Weight , Environmental Monitoring/methods , Environmental Monitoring/statistics & numerical data , Pacific Ocean , Washington
10.
J Exp Biol ; 206(Pt 13): 2125-33, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12771162

ABSTRACT

Antarctic fulmarine petrels breed in some of the coldest conditions encountered by any bird and their young grow twice as fast as predicted allometrically. To examine the energetic consequences of fast growth in a cold environment, we used the doubly labeled water technique to measure field metabolic rates of adults (three species) and different-aged nestlings (four species) of Antarctic fulmarine petrels in the Rauer Islands, East Antarctica: Antarctic fulmar Fulmarus glacialoides, Antarctic petrel Thalassoica antarctica, Cape petrel Daption capense and snow petrel Pagodroma nivea. We used our data to assess parental effort and, together with literature values on nestling growth and resting metabolic rate, to construct and partition nestling energy budgets. Nestling total energy expenditure and peak daily metabolic rate were significantly higher than predicted allometrically (33-73% and 17-66% higher, respectively), and the relative cost of growth in nestling petrels was among the highest reported for birds (54-72 kJ g(-1)). Parental effort during the nestling-feeding period was identical in adult Cape and Antarctic petrels (3.5 times basal metabolic rate, BMR), and was somewhat (but not significantly) higher in snow petrels (4.6 times BMR). These values are comparable to those of other high-latitude procellariiform birds. Thus, despite the constraints of a compressed breeding season, cold temperatures and fast-growing nestlings, adult Antarctic fulmarine petrels do not work harder than procellariid adults whose chicks grow much more slowly. Our findings suggest that obtaining sufficient food is generally not a constraint for adult fulmarine petrels and that factors operating at the tissue level limit nestling growth rate.


Subject(s)
Birds/growth & development , Birds/physiology , Energy Metabolism/physiology , Nesting Behavior/physiology , Adaptation, Physiological , Animals , Antarctic Regions , Cold Temperature , Isotope Labeling
11.
Oecologia ; 132(3): 419-427, 2002 Aug.
Article in English | MEDLINE | ID: mdl-28547420

ABSTRACT

Blue-footed boobies (Sula nebouxii) in the Galápagos Islands nest at coastal sites such as cliff edges if Nazca boobies (S. granti) are absent. However, if sympatric with nesting Nazca boobies, they nest nearby, but farther inland, in areas with little topographical relief. Nazca boobies nest at the coastal sites whether blue-footed boobies are present or not. The segregated nesting pattern of these two species offers a model system to investigate factors influencing community structure. We tested a non-interactive hypothesis, in which different fundamental niches generate the non-overlapping distributions, and an interactive hypothesis, in which the two fundamental niches overlap and an interaction between the two species causes the segregation. Data on three factors considered as likely parameters differentiating fundamental niches (nest microclimate, nature of the nesting substrate, and ease of taking flight from nest sites) failed to support the non-interactive hypothesis. These results suggest that the two species have indistinguishable fundamental niches with respect to these parameters, but different realized niches. Researchers studying resource partitioning by ecologically similar species often only consider competition (a "-/-" interaction) to explain situations like this, ignoring the more parsimonious amensal (0/-) possibility. Nesting segregation in this situation is apparently caused by attacks of non-breeding adult Nazca boobies on blue-footed booby nestlings, injuring nestlings and ultimately preventing them from fledging. The interaction does not result in any discernible costs or benefits (i.e., effects on fecundity or survival) for the adult Nazca boobies, so it is best described as an amensal interaction. This interaction provides a sufficient explanation of the observed nesting segregation, and precludes present competition for nesting space.

SELECTION OF CITATIONS
SEARCH DETAIL
...