Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 377(6614): 1513-1519, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36007094

ABSTRACT

The geological units on the floor of Jezero crater, Mars, are part of a wider regional stratigraphy of olivine-rich rocks, which extends well beyond the crater. We investigated the petrology of olivine and carbonate-bearing rocks of the Séítah formation in the floor of Jezero. Using multispectral images and x-ray fluorescence data, acquired by the Perseverance rover, we performed a petrographic analysis of the Bastide and Brac outcrops within this unit. We found that these outcrops are composed of igneous rock, moderately altered by aqueous fluid. The igneous rocks are mainly made of coarse-grained olivine, similar to some martian meteorites. We interpret them as an olivine cumulate, formed by settling and enrichment of olivine through multistage cooling of a thick magma body.

2.
J Geophys Res Planets ; 124(2): 243-277, 2019 Feb.
Article in English | MEDLINE | ID: mdl-32874819

ABSTRACT

Ice sintering is a form of metamorphism that drives the microstructural evolution of an aggregate of grains through surface and volume diffusion. This leads to an increase in the grain-to-grain contact area ("neck") and density of the aggregate over time, resulting in the evolution of its strength, porosity, thermal conductivity, and other properties. This process plays an important role in the evolution of icy planetary surfaces, though its rate and nature are not well constrained. In this study, we explore the model of Swinkels and Ashby (1981), and assess the extent to which it can be used to quantify sintering timescales for water ice. We compare predicted neck growth rates to new and historical observations of ice sintering, and find agreement to some studies at the order of magnitude level. First-order estimates of neck growth timescales on planetary surfaces show that ice may undergo significant modification over geologic timescales, even in the outer solar system. Densification occurs over much longer timescales, suggesting some surfaces may develop cohesive, but porous, crusts. Sintering rates are extremely sensitive to temperature and grain size, occurring faster in warmer aggregates of smaller grains. This suggests that the microstructural evolution of ices may vary not only throughout the solar system, but also spatially across the surface and in the near-surface of a given body. Our experimental observations of complex grain growth and mass redistribution in ice aggregates point to components of the model that may benefit from improvement, and areas where additional laboratory studies are needed.

3.
Chirality ; 13(10): 703-6, 2001.
Article in English | MEDLINE | ID: mdl-11746805

ABSTRACT

A new method is introduced to determine the extent to which spontaneous chiral separation occurs in small noncovalently bound clusters. Soft-sampling electrospray ionization was used to transfer noncovalent complexes from solution to the gas phase. Mixing D and L enantiomers with one of the pair isotopically labeled reveals the effect of chirality on cluster stability. The observed cluster distribution is compared to the predicted statistical distribution to determine any preference for homo- or heterochirality. Arginine, for example, forms a stable trimer with no preference for the chirality of the individual amino acids. Serine, however, forms a protonated octamer with a pronounced preference for homochirality. The implications of these results for the structures of the complexes are discussed along with the broader implications for the origins of homochirality in living systems (homochirogenesis).

4.
J Am Chem Soc ; 123(15): 3577-83, 2001 Apr 18.
Article in English | MEDLINE | ID: mdl-11472129

ABSTRACT

The discovery of several new unusually stable aggregates of arginine that are intermolecularly bound by salt bridges is reported. Quadrupole ion-trap mass spectrometry provides evidence for the stability of arginine in the zwitterionic state, where the protonated guanidinium group of one arginine interacts strongly with the carboxylate of another to form stable noncovalent complexes, coordinated to either a cation or anion. Clusters of arginine with itself, sodium, potassium, lithium, magnesium, chloride, fluoride, bromide, iodide, and nitrate are observed. DFT calculations at the B3LYP/6-31G level are used to assess the structures and energetics of particularly prominent clusters. An examination of mixtures of D-arginine with isotopically labeled L-arginine indicates that the stability of these clusters does not depend on arginine enantiomeric purity. The cyclic trimers of arginine, capped with either Cl(-) or NO(3)(-), possess exceptional stability.


Subject(s)
Arginine/chemistry , Salts/chemistry , Amino Acids/chemistry , Metals/chemistry , Models, Chemical , Molecular Conformation , Quaternary Ammonium Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...