Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
ACS Earth Space Chem ; 8(5): 957-964, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38774358

ABSTRACT

With its large size, dense atmosphere, methane-based hydrological-like cycle, and diverse surface features, the Saturnian moon Titan is one of the most unique of the outer Solar System satellites. Study of the photochemically produced molecules in Titan's atmosphere is critical in order to understand the mechanics of the atmosphere and, by extension, the interactions between atmosphere, surface, and subsurface water ocean. One example is propyne vapor, a photochemically produced species in Titan's upper atmosphere expected to condense in Titan's stratosphere at lower altitudes. Propyne may also be a trace species in Titan's stratospheric co-condensed ice clouds detected by the Cassini Composite InfraRed Spectrometer. Bulk structural characterization of propyne ice is currently incomplete and is lacking in published laboratory Raman spectra and X-ray diffraction data. Here, we present a laboratory characterization of propyne ice, including the first published X-ray diffraction and Raman spectroscopy results for propyne ice.

2.
Anal Chem ; 96(22): 8875-8879, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38776223

ABSTRACT

This work presents a benchtop method for collecting the room temperature gas phase infrared (IR) action spectra of protonated amino acids and their isomers. The adopted setup uses a minimally modified commercial electrospray ionization linear ion trap mass spectrometer (ESI-LIT-MS) coupled to a broadband continuous wave (cw) quantum cascade laser (QCL) source. This approach leverages messenger assisted action spectroscopic techniques using water-tagged molecular ions with complex formation, irradiation, and subsequent analysis, all taking place within a single linear ion trap stage. This configuration thus circumvents the use of multiple mass selection and analysis stages, cryogenic buffer cells, and complex high-power laser systems typically called upon to execute these techniques. The benchtop action spectrometer is used to collect the 935-1600 cm-1 (6.2-10.7 µm) IR action spectrum of a collection of amino acids and a dipeptide with results cross referenced against literature examples obtained with a free electron laser source. Recorded IR spectra are used for the analysis of binary mixture samples composed of constitutional isomers α-alanine and ß-alanine with ratios determined to ∼4% measurement uncertainty without the aid of a front-end separation stage. This turn-key QCL-based approach is a major step in showing the viability of tag-based action spectroscopic techniques for use in future in situ planetary science sensors and general analytical applications.

3.
Sci Adv ; 9(23): eadh0394, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37285429

ABSTRACT

The ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instrument aboard the Rosetta mission revolutionized our understanding of cometary material composition. One of Rosetta's key findings is the complexity of the composition of comet 67P/Churyumov-Gerasimenko. Here, we used ROSINA data to analyze dust particles that were volatilized during a dust event in September 2016 and report the detection of large organosulfur species and an increase in the abundances of sulfurous species previously detected in the coma. Our data support the presence of complex sulfur-bearing organics on the surface of the comet. In addition, we conducted laboratory simulations that show that this material may have formed from chemical reactions that were initiated by the irradiation of mixed ices containing H2S. Our findings highlight the importance of sulfur chemistry in cometary and precometary materials and the possibility of characterizing organosulfur materials in other comets and small icy bodies using the James Webb Space Telescope.

4.
ACS Earth Space Chem ; 7(3): 597-608, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36960425

ABSTRACT

Titan, Saturn's largest moon, has a plethora of organic compounds in the atmosphere and on the surface that interact with each other. Cryominerals such as co-crystals may influence the geologic processes and chemical composition of Titan's surface, which in turn informs our understanding of how Titan may have evolved, how the surface is continuing to change, and the extent of Titan's habitability. Previous works have shown that a pyridine:acetylene (1:1) co-crystal forms under specific temperatures and experimental conditions; however, this has not yet been demonstrated under Titan-relevant conditions. Our work here demonstrates that the pyridine:acetylene co-crystal is stable from 90 K, Titan's average surface temperature, up to 180 K under an atmosphere of N2. In particular, the co-crystal forms via liquid-solid interactions within minutes upon mixing of the constituents at 150 K, as evidenced by distinct, new Raman bands and band shifts. X-ray diffraction (XRD) results indicate moderate anisotropic thermal expansion (about 0.5-1.1%) along the three principal axes between 90-150 K. Additionally, the co-crystal is detectable after being exposed to liquid ethane, implying stability in a residual ethane "wetting" scenario on Titan. These results suggest that the pyridine:acetylene co-crystal could form in specific geologic contexts on Titan that allow for warm environments in which liquid pyridine could persist, and as such, this cryomineral may preserve the evidence of impact, cryovolcanism, or subsurface transport in surface materials.

5.
J Phys Chem A ; 127(10): 2322-2335, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36790472

ABSTRACT

The formation of molecular cocrystals in condensed aerosol particles has been recently proposed as an efficient pathway for generation of complex organics in Titan's atmosphere. It follows that cocrystal precipitation may facilitate the transport of biologically important precursors to the surface to be sequestered in an organic karstic and sand environment. Recent laboratory studies on these planetary minerals have predominantly synthesized cocrystals by the controlled freezing of binary mixtures from the liquid phase, allowing for their structural and spectroscopic characterization. However, these techniques are perhaps not best representative of aerosol nucleation and growth microphysics in planetary atmospheres. Herein, we report the first synthesis of the known 1:1 C6H6:C2H2 cocrystal using vapor deposition methods onto a cryogenically cooled substrate. Subsequent transmission FTIR spectroscopy has confirmed the formation of the empirical C6H6:C2H2 cocrystal structure via the observation of diagnostic infrared spectral features. Predicted by periodic-DFT calculations, altered vibrational profiles depict a changing site symmetry of the C6H6 and C2H2 components after transition to the cocrystal unit cell geometry. The 80 K temperature of the cocrystal phase transition overlaps with the condensation curves obtained for both species in Titan's lower stratosphere, revealing that the cocrystal may act as an important environment for photo- and radio-lytic processes leading to the formation of higher order organics in Titan's atmosphere. Such solid-state astrochemistry can now be pursued in oxygen-free laboratory settings under (ultra)high vacuum using standard surface science setups.

6.
Nat Commun ; 13(1): 7949, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36572686

ABSTRACT

Small organic molecules, like ethane and benzene, are ubiquitous in the atmosphere and surface of Saturn's largest moon Titan, forming plains, dunes, canyons, and other surface features. Understanding Titan's dynamic geology and designing future landing missions requires sufficient knowledge of the mechanical characteristics of these solid-state organic minerals, which is currently lacking. To understand the deformation and mechanical properties of a representative solid organic material at space-relevant temperatures, we freeze liquid micro-droplets of benzene to form ~10 µm-tall single-crystalline pyramids and uniaxially compress them in situ. These micromechanical experiments reveal contact pressures decaying from ~2 to ~0.5 GPa after ~1 µm-reduction in pyramid height. The deformation occurs via a series of stochastic (~5-30 nm) displacement bursts, corresponding to densification and stiffening of the compressed material during cyclic loading to progressively higher loads. Molecular dynamics simulations reveal predominantly plastic deformation and densified region formation by the re-orientation and interplanar shear of benzene rings, providing a two-step stiffening mechanism. This work demonstrates the feasibility of in-situ cryogenic nanomechanical characterization of solid organics as a pathway to gain insights into the geophysics of planetary bodies.

7.
Acc Chem Res ; 54(15): 3050-3059, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34296607

ABSTRACT

In this Account, we highlight recent work in the developing field of mineralogy of Saturn's moon Titan, focusing on binary co-crystals of small organic molecules. Titan has a massive inventory of organic molecules on its surface that are formed via photochemistry in the atmosphere and likely processing on the surface as well. Physical processes both in the atmosphere and on the surface can lead to molecules interacting at cryogenic temperatures. Recent laboratory work has demonstrated that co-crystals between two or more molecules can form under these conditions. In the organic-rich environment of Titan, such co-crystals are naturally occurring minerals and a critical area of research to understand the physical, chemical, and possibly even biological and prebiotic processes occurring in this alien world.With a future NASA mission, Dragonfly, slated to land on Titan in the next decade, much work is needed to understand organic mineralogy in order to properly interpret the data from this and past Titan missions, such as Cassini-Huygens. By cataloging Titan minerals and their properties, we can begin to connect these behaviors to large-scale surface features observed on Titan (labyrinth terrain, lake evaporites, karst, dunes, etc.), and possible processes leading to their formation (erosion, deposition, etc.). To date, seven co-crystals (aside from clathrates and hydrates) have been experimentally reported to form under Titan-relevant conditions, with an eighth predicted by theoretical modeling. This Account will summarize the formation and properties of these cryominerals and discuss the implications for surface processes on Titan. Enhanced thermal expansion and decreased crystal size, for example, may lead to fracturing and/or more rapid erosion of co-crystal-based deposits; density changes upon co-crystal formation may also play a role in organic diagenesis and metamorphism on Titan. Some cryominerals with stability only under certain conditions may preserve the evidence of Titan's history, such as cryovolcanic activity, ethane fluvial/pluvial exposure, and outgassing of CO2 from the interior of the moon.In this Account, we will also highlight areas of future work, such as the characterization of pure molecular solids and the search for ternary (and more complex) co-crystals. We note that on Titan, organic chemistry dominates, which gives a unique opportunity for chemists to play an even more significant role in planetary science discoveries and likewise in discoveries motivated by planetary science to inform fundamental organic and physical chemistry research.

8.
Astrobiology ; 21(4): 421-442, 2021 04.
Article in English | MEDLINE | ID: mdl-33749334

ABSTRACT

The atomic-scale fragmentation processes involved in molecules undergoing hypervelocity impacts (HVIs; defined as >3 km/s) are challenging to investigate via experiments and still not well understood. This is particularly relevant for the consistency of biosignals from small-molecular-weight neutral organic molecules obtained during solar system robotic missions sampling atmospheres and plumes at hypervelocities. Experimental measurements to replicate HVI effects on neutral molecules are challenging, both in terms of accelerating uncharged species and isolating the multiple transition states over very rapid timescales (<1 ps). Nonequilibrium first-principles-based simulations extend the range of what is possible with experiments. We report on high-fidelity simulations of the fragmentation of small organic biosignature molecules over the range v = 1-12 km/s, and demonstrate that the fragmentation fraction is a sensitive function of velocity, impact angle, molecular structure, impact surface material, and the presence of surrounding ice shells. Furthermore, we generate interpretable fragmentation pathways and spectra for velocity values above the fragmentation thresholds and reveal how organic molecules encased in ice grains, as would likely be the case for those in "ocean worlds," are preserved at even higher velocities than bare molecules. Our results place ideal spacecraft encounter velocities between 3 and 5 km/s for bare amino and fatty acids and within 4-6 km/s for the same species encased in ice grains and predict the onset of organic fragmentation in ice grains at >5 km/s, both consistent with recent experiments exploring HVI effects using impact-induced ionization and analysis via mass spectrometry and from the analysis of Enceladus organics in Cassini Data. From nanometer-sized ice Ih clusters, we establish that HVI energy is dissipated by ice casings through thermal resistance to the impact shock wave and that an upper fragmentation velocity limit exists at which ultimately any organic contents will be cleaved by the surrounding ice-this provides a fundamental path to characterize micrometer-sized ice grains. Altogether, these results provide quantifiable insights to bracket future instrument design and mission parameters.


Subject(s)
Fatty Acids , Solar System , Atmosphere , Mass Spectrometry
9.
Astrobiology ; 20(10): 1168-1184, 2020 10.
Article in English | MEDLINE | ID: mdl-32493049

ABSTRACT

Identifying and distinguishing between abiotic and biotic signatures of organic molecules such as amino acids and fatty acids is key to the search for life on extraterrestrial ocean worlds. Impact ionization mass spectrometers can potentially achieve this by sampling water ice grains formed from ocean water and ejected by moons such as Enceladus and Europa, thereby exploring the habitability of their subsurface oceans in spacecraft flybys. Here, we extend previous high-sensitivity laser-based analog experiments of biomolecules in pure water to investigate the mass spectra of amino acids and fatty acids at simulated abiotic and biotic relative abundances. To account for the complex background matrix expected to emerge from a salty Enceladean ocean that has been in extensive chemical exchange with a carbonaceous rocky core, other organic and inorganic constituents are added to the biosignature mixtures. We find that both amino acids and fatty acids produce sodiated molecular peaks in salty solutions. Under the soft ionization conditions expected for low-velocity (2-6 km/s) encounters of an orbiting spacecraft with ice grains, the unfragmented molecular spectral signatures of amino acids and fatty acids accurately reflect the original relative abundances of the parent molecules within the source solution, enabling characteristic abiotic and biotic relative abundance patterns to be identified. No critical interferences with other abiotic organic compounds were observed. Detection limits of the investigated biosignatures under Enceladus-like conditions are salinity dependent (decreasing sensitivity with increasing salinity), at the µM or nM level. The survivability and ionization efficiency of large organic molecules during impact ionization appear to be significantly improved when they are protected by a frozen water matrix. We infer from our experimental results that encounter velocities of 4-6 km/s are most appropriate for impact ionization mass spectrometers to detect and discriminate between abiotic and biotic signatures.


Subject(s)
Amino Acids/analysis , Exobiology , Fatty Acids/analysis , Ice , Extraterrestrial Environment , Ice/analysis , Minor Planets , Oceans and Seas
10.
Astrobiology ; 20(7): 889-896, 2020 07.
Article in English | MEDLINE | ID: mdl-32580565

ABSTRACT

This work investigated microorganism survival under temperature and ultraviolet (UV) radiation conditions found at the surface of ice-covered ocean worlds. These studies were motivated by a desire to understand the ability of resilient forms of life to survive under such conditions as a proxy for potential endogenic life and to inform planetary protection protocols for future missions. To accomplish this, we irradiated Bacillus subtilis spores with solar-like UV photons at temperatures ranging from room temperature down to 11 K and reported survival fractions with respect to fluence. We observed an increase in survival at low temperatures and found that the inactivation rate follows an Arrhenius-type behavior above 60 K. For solar-photon fluxes and surface temperatures at Europa and Enceladus, we found that Bacillus subtilis spores would be inactivated in less than an hour when in direct sunlight.


Subject(s)
Acclimatization/physiology , Bacillus subtilis/physiology , Cold Temperature/adverse effects , Extraterrestrial Environment , Ultraviolet Rays/adverse effects , Acclimatization/radiation effects , Bacillus subtilis/radiation effects , Exobiology , Ice Cover/microbiology , Jupiter , Oceans and Seas , Saturn , Spores, Bacterial/physiology , Spores, Bacterial/radiation effects
11.
J Phys Chem A ; 123(32): 7051-7056, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31310533

ABSTRACT

The vibrational signatures for the υ2 C≡C and υ1 symmetric C-H stretches of acetylene in cubic structure I clathrate, synthesized under ambient pressure, are reported for the first time. The most diagnostic features are at 1966 for υ2 and 3353 cm-1 for υ1, respectively, and are assigned to acetylene trapped in the large 51262 cages. In addition, the υ2 mode for acetylene occupying the small 512 cages is observed at 1972.5 cm-1, a red shift of 1.5 cm-1 from its gas phase frequency. Unit cell parameters and thermal expansion coefficients are determined via powder X-ray diffraction between 195 and 225 K and are found to be in good correlation with previous single crystal data at 143 K. The calculated density for acetylene clathrate is also reported, with values ranging from 0.985 g/cm3 at 195 K to 0.976 g/cm3 at 225 K. These results are relevant for spectral detection of acetylene-containing compounds on planetary bodies, as well as providing additional insights on the thermal behavior and physical properties of acetylene clathrate.

12.
Geobiology ; 17(2): 151-160, 2019 03.
Article in English | MEDLINE | ID: mdl-30450841

ABSTRACT

Ooids are accretionary grains commonly reported from turbulent, shallow-water environments. They have long been associated with microbially dominated ecosystems and often occur in close proximity to, or embedded within, stromatolites, yet have historically been thought to form solely through physicochemical processes. Numerous studies have revealed both constructive and destructive roles for microbes colonizing the surfaces of modern calcitic and aragonitic ooids, but there has been little evidence for the operation of these processes during the Archean and Proterozoic, when both ooids and microbially dominated ecosystems were more widespread. Recently described carbonate ooids from the 2.9 Ga Pongola Supergroup, South Africa, include well-preserved examples composed of diagenetic dolomite interpreted to have formed from a high-Mg-calcite precursor. Spatial distributions of organic matter and elements associated with metabolic activity (N, S, and P) were interpreted as evidence for a biologically induced origin. Here, we describe exceptionally well-preserved ooids composed of calcite, collected from Earth's oldest known carbonate lake system, the ~2.72 Ga Meentheena Member (Tumbiana Formation), Fortescue Group, Western Australia. We used optical microscopy, Raman spectroscopy, XRD, SEM-EDS, LA-ICP-MS, EA-IRMS, and a novel micro-XRF instrument to investigate an oolite shoal deposited between stromatolites that preserve abundant evidence for microbial activity. We report an extremely fine, radial-concentric, calcitic microfabric that is similar to the primary and early diagenetic fabrics of calcitic ooids reported from modern temperate lakes. Early diagenetic silica has trapped isotopically light and thermally mature organic matter. The close association of organic matter with mineral phases and microfabrics related to primary and early diagenetic processes suggest incorporation of organic matter occurred during accretion, likely due to the presence of microbial biofilms. We conclude that the oldest known calcitic ooids were likely formed through processes similar to those that mediate the accretion of ooids in similar environments today, including formation within a microbial biosphere.


Subject(s)
Bacterial Physiological Phenomena , Biofilms , Calcium Carbonate/analysis , Carbonates/analysis , Geologic Sediments/chemistry , Lakes/chemistry , Paleontology , Western Australia
13.
Rev Sci Instrum ; 89(12): 124502, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30599566

ABSTRACT

Titan's hydrocarbon lakes play an important role in the chemistry, geomorphology, and climate of the satellite. Our knowledge of their composition relies mainly on thermodynamic modeling and assumptions based on Cassini Radar and VIMS (Visible and Infrared Mapping Spectrometer) data. Several thermodynamic models have been used to calculate the composition of these lakes, and their results on even the major lake components (methane, ethane, propane, and nitrogen) exhibit large discrepancies. Recent Cassini radar observations revealed an echo from the lake's bottom. A low loss factor of attenuation is needed within the lakes to interpret these observations, and it has been suggested that the lakes are dominated by methane. Cassini VIMS data obtained on the North Pole lakes at three-year intervals showed no detectable surface level change, which is consistent with ethane being their primary constituent. This additional discrepancy between thermodynamic models and Cassini data strongly shows the need for experimental measurements under realistic Titan conditions in order to better constrain the thermodynamic models. We designed and built a cryogenic experimental platform allowing the simulation of Titan's lakes. This facility, named Titan Lakes Simulation System (TiLSS), produces liquid hydrocarbons in equilibrium with a gas phase mimicking Titan's atmosphere. Samples of the condensed liquid are injected directly into a gas chromatograph allowing the direct measurement of its chemical components and their abundances. To test the overall operation of the system, a gas mixture of methane and ethane was condensed under 1.5 bar of nitrogen and analyzed. Results from this proof of concept test are in good agreement with experimental studies previously published.

14.
J Am Soc Mass Spectrom ; 27(11): 1805-1812, 2016 11.
Article in English | MEDLINE | ID: mdl-27624160

ABSTRACT

We demonstrate the first application of laser-induced acoustic desorption (LIAD) and atmospheric pressure photoionization (APPI) as a mass spectrometric method for detecting low-polarity organics. This was accomplished using a Lyman-α (10.2 eV) photon generating microhollow cathode discharge (MHCD) microplasma photon source in conjunction with the addition of a gas-phase molecular dopant. This combination provided a soft desorption and a relatively soft ionization technique. Selected compounds analyzed include α-tocopherol, perylene, cholesterol, phenanthrene, phylloquinone, and squalene. Detectable surface concentrations as low as a few pmol per spot sampled were achievable using test molecules. The combination of LIAD and APPI provided a soft desorption and ionization technique that can allow detection of labile, low-polarity, structurally complex molecules over a wide mass range with minimal fragmentation. Graphical Abstract ᅟ.

15.
IUCrJ ; 3(Pt 3): 192-9, 2016 May 01.
Article in English | MEDLINE | ID: mdl-27158505

ABSTRACT

Using synchrotron X-ray powder diffraction, the structure of a co-crystal between benzene and ethane formed in situ at cryogenic conditions has been determined, and validated using dispersion-corrected density functional theory calculations. The structure comprises a lattice of benzene molecules hosting ethane molecules within channels. Similarity between the intermolecular interactions found in the co-crystal and in pure benzene indicate that the C-H⋯π network of benzene is maintained in the co-crystal, however, this expands to accommodate the guest ethane molecules. The co-crystal has a 3:1 benzene:ethane stoichiometry and is described in the space group [Formula: see text] with a = 15.977 (1) Šand c = 5.581 (1) Šat 90 K, with a density of 1.067 g cm(-3). The conditions under which this co-crystal forms identify it is a potential that forms from evaporation of Saturn's moon Titan's lakes, an evaporite material.

16.
Astrobiology ; 15(11): 961-76, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26575217

ABSTRACT

UNLABELLED: A new generation of planetary rover instruments, such as PIXL (Planetary Instrument for X-ray Lithochemistry) and SHERLOC (Scanning Habitable Environments with Raman Luminescence for Organics and Chemicals) selected for the Mars 2020 mission rover payload, aim to map mineralogical and elemental composition in situ at microscopic scales. These instruments will produce large spectral cubes with thousands of channels acquired over thousands of spatial locations, a large potential science yield limited mainly by the time required to acquire a measurement after placement. A secondary bottleneck also faces mission planners after downlink; analysts must interpret the complex data products quickly to inform tactical planning for the next command cycle. This study demonstrates operational approaches to overcome these bottlenecks by specialized early-stage science data processing. Onboard, simple real-time systems can perform a basic compositional assessment, recognizing specific features of interest and optimizing sensor integration time to characterize anomalies. On the ground, statistically motivated visualization can make raw uncalibrated data products more interpretable for tactical decision making. Techniques such as manifold dimensionality reduction can help operators comprehend large databases at a glance, identifying trends and anomalies in data. These onboard and ground-side analyses can complement a quantitative interpretation. We evaluate system performance for the case study of PIXL, an X-ray fluorescence spectrometer. Experiments on three representative samples demonstrate improved methods for onboard and ground-side automation and illustrate new astrobiological science capabilities unavailable in previous planetary instruments. KEY WORDS: Dimensionality reduction-Planetary science-Visualization.


Subject(s)
Exobiology/instrumentation , Fluorescence , X-Rays
17.
Astrobiology ; 15(1): 20-31, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25590531

ABSTRACT

One of the most habitable environments in the Solar System outside of Earth may exist underneath the ice on Europa. In the near future, our best chance to look for chemical signatures of a habitable environment (or life itself) will likely be at the inhospitable icy surface. Therefore, it is important to understand the ability of organic signatures of life and life itself to persist under simulated europan surface conditions. Toward that end, this work examined the UV photolysis of Bacillus subtilis spores and their chemical marker dipicolinic acid (DPA) at temperatures and pressures relevant to Europa. In addition, inactivation curves for the spores at 100 K, 100 K covered in one micron of ice, and 298 K were measured to determine the probability for spore survival at the surface. Fourier transform infrared spectra of irradiated DPA showed a loss of carboxyl groups to CO2 as expected but unexpectedly showed significant opening of the heterocyclic ring, even for wavelengths>200 nm. Both DPA and B. subtilis spores showed identical unknown spectral bands of photoproducts after irradiation, further highlighting the importance of DPA in the photochemistry of spores. Spore survival was enhanced at 100 K by ∼5× relative to 298 K, but 99.9% of spores were still inactivated after the equivalent of ∼25 h of exposure on the europan surface.


Subject(s)
Bacillus subtilis/radiation effects , Spores/radiation effects , Artifacts , Bacillus subtilis/physiology , Exobiology , Photochemistry , Picolinic Acids/chemistry , Pressure , Spectrophotometry , Spectrophotometry, Infrared , Spectroscopy, Fourier Transform Infrared , Spores/physiology , Temperature , Ultraviolet Rays , Water/chemistry
18.
J Am Soc Mass Spectrom ; 25(11): 1832-40, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24986759

ABSTRACT

Laser desorption is an attractive technique for in situ sampling of organics on Mars given its relative simplicity. We demonstrate that under simulated Martian conditions (~2.5 Torr CO(2)) laser desorption of neutral species (e.g., polycyclic aromatic hydrocarbons), followed by ionization with a simple ultraviolet light source such as a discharge lamp, offers an effective means of sampling organics for detection and identification with a mass spectrometer. An electrodynamic ion funnel is employed to provide efficient ion collection in the ambient Martian environment. This experimental methodology enables in situ sampling of Martian organics with minimal complexity and maximum flexibility.


Subject(s)
Mars , Mass Spectrometry/instrumentation , Organic Chemicals/analysis , Space Flight/instrumentation , Atmospheric Pressure , Mass Spectrometry/methods , Space Flight/methods
19.
J Phys Chem B ; 118(47): 13371-7, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-24940841

ABSTRACT

Clathrate hydrates, ice-like crystalline compounds in which small guest molecules are enclosed inside cages formed by tetrahedrally hydrogen-bonded water molecules, are naturally abundant on Earth and are generally expected to exist on icy celestial bodies. A prototypical example is Saturn's moon Titan, where dissociation of methane clathrates, a major crustal component, could contribute significantly to the replenishment of atmospheric methane. Ammonia is an important clathrate inhibiting agent that may be present (potentially at high concentrations) in Titan's interior. In this study, low-temperature Raman experiments are conducted to examine the dissociation point of tetrahydrofuran clathrates, an ambient-pressure analogue of methane clathrates, over a wide range of ammonia concentrations from 0 to 25 wt %. A phase diagram for the H2O-THF-NH3 system is generated, showing two main results: (i) ammonia lowers the dissociation point of clathrate hydrates to a similar extent compared to the melting of water ice and (ii) THF clathrate exhibits a "liquidus-like" behavior in the presence of ammonia, with a eutectic temperature of about 203.6 K. As temperatures higher than this estimated eutectic are anticipated within Titan's icy crust, these results imply that partial dissociation of clathrates can occur readily and may contribute to outgassing from the interior.

20.
J Phys Chem A ; 118(23): 4087-94, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24809894

ABSTRACT

We report the first experimental finding of a solid molecular complex between benzene and ethane, two small apolar hydrocarbons, at atmospheric pressure and cryogenic temperatures. Considerable amounts of ethane are found to be incorporated inside the benzene lattice upon the addition of liquid ethane onto solid benzene at 90-150 K, resulting in formation of a distinctive co-crystalline structure that can be detected via micro-Raman spectroscopy. Two new features characteristic of these co-crystals are observed in the Raman spectra at 2873 and 1455 cm(-1), which are red-shifted by 12 cm(-1) from the υ1 (a1g) and υ11 (eg) stretching modes of liquid ethane, respectively. Analysis of benzene and ethane vibrational bands combined with quantum mechanical modeling of isolated molecular dimers reveal an interaction between the aromatic ring of benzene and the hydrogen atoms of ethane in a C-H···π fashion. The most favored configuration for the benzene-ethane dimer is the monodentate-contact structure, with a calculated interaction energy of 9.33 kJ/mol and an equilibrium bonding distance of 2.66 Å. These parameters are comparable to those for a T-shaped co-crystalline complex between benzene and acetylene that has been previously reported in the literature. These results are relevant for understanding the hydrocarbon cycle of Titan, where benzene and similar organics may act as potential hydrocarbon reservoirs due to this incorporation mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...