Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Evol Biol ; 35(10): 1309-1318, 2022 10.
Article in English | MEDLINE | ID: mdl-35972882

ABSTRACT

The male competition for fertilization that results from female multiple mating promotes the evolution of increased sperm numbers and can impact sperm morphology, with theory predicting that longer sperm can at times be advantageous during sperm competition. If so, males with longer sperm should sire more offspring than competitors with shorter sperm. Few studies have directly tested this prediction, and findings are inconsistent. Here we assessed whether longer sperm provide a competitive advantage in the yellow dung fly (Scathophaga stercoraria; Diptera: Scathophagidae). Initially, we let brothers with different temperature-mediated mean sperm lengths compete - thus minimizing confounding effects of genetic background - and found no clear advantage of longer sperm. We then used flies from lines subjected to bidirectional selection on phenoloxidase activity that had shown correlated evolutionary responses in sperm and female spermathecal duct lengths. This experiment also yielded no main effect of sperm size on siring success. Instead, there was a trend for a shorter-sperm advantage, but only when competing in females with longer spermathecal ducts. Our data corroborated many previously reported findings (last-male precedence, effects of copula duration and body size), suggesting our failure to find sperm size effects is not inherently due to our experimental protocols. We conclude that longer sperm are not competitively superior in yellow dung flies under most circumstances, and that, consistent with previous work, in this species competitive fertilization success is primarily determined by the relative numbers of sperm competing.


Subject(s)
Diptera , Animals , Diptera/anatomy & histology , Female , Male , Monophenol Monooxygenase , Reproduction/physiology , Semen , Spermatozoa/physiology
2.
Ecol Evol ; 10(23): 13345-13354, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33304542

ABSTRACT

The gut microbiome of animals, which serves important functions but can also contain potential pathogens, is to varying degrees under host genetic control. This can generate signals of phylosymbiosis, whereby gut microbiome composition matches host phylogenetic structure. However, the genetic mechanisms that generate phylosymbiosis and the scale at which they act remain unclear. Two non-mutually exclusive hypotheses are that phylosymbiosis is driven by immunogenetic regions such as the major histocompatibility complex (MHC) controlling microbial composition, or by spatial structuring of neutral host genetic diversity via founder effects, genetic drift, or isolation by distance. Alternatively, associations between microbes and host phylogeny may be generated by their spatial autocorrelation across landscapes, rather than the direct effects of host genetics. In this study, we collected MHC, microsatellite, and gut microbiome data from separate individuals belonging to the Galápagos mockingbird species complex, which consists of four allopatrically distributed species. We applied multiple regression with distance matrices and Bayesian inference to test for correlations between average genetic and microbiome similarity across nine islands for which all three levels of data were available. Clustering of individuals by species was strongest when measured with microsatellite markers and weakest for gut microbiome distributions, with intermediate clustering of MHC allele frequencies. We found that while correlations between island-averaged gut microbiome composition and both microsatellite and MHC dissimilarity existed across species, these relationships were greatly weakened when accounting for geographic distance. Overall, our study finds little support for large-scale control of gut microbiome composition by neutral or adaptive genetic regions across closely related bird phylogenies, although this does not preclude the possibility that host genetics shapes gut microbiome at the individual level.

3.
Mol Ecol ; 25(19): 4757-72, 2016 10.
Article in English | MEDLINE | ID: mdl-27545344

ABSTRACT

The extracellular subunit of the major histocompatibility complex MHCIIß plays an important role in the recognition of pathogens and the initiation of the adaptive immune response of vertebrates. It is widely accepted that pathogen-mediated selection in combination with neutral micro-evolutionary forces (e.g. genetic drift) shape the diversity of MHCIIß, but it has proved difficult to determine the relative effects of these forces. We evaluated the effect of genetic drift and balancing selection on MHCIIß diversity in 12 small populations of Galápagos mockingbirds belonging to four different species, and one larger population of the Northern mockingbird from the continental USA. After genotyping MHCIIß loci by high-throughput sequencing, we applied a correlational approach to explore the relationships between MHCIIß diversity and population size by proxy of island size. As expected when drift predominates, we found a positive effect of population size on the number of MHCIIß alleles present in a population. However, the number of MHCIIß alleles per individual and number of supertypes were not correlated with population size. This discrepancy points to an interesting feature of MHCIIß diversity dynamics: some levels of diversity might be shaped by genetic drift while others are independent and possibly maintained by balancing selection.


Subject(s)
Genes, MHC Class II , Genetic Drift , Passeriformes/genetics , Selection, Genetic , Animals , Ecuador , Genetic Variation , Genetics, Population , Genotype , Islands , Population Density
4.
J Anim Ecol ; 84(4): 969-77, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25757031

ABSTRACT

Infectious diseases are widely recognized to have substantial impact on wildlife populations. These impacts are sometimes exacerbated in small endangered populations, and therefore, the success of conservation reintroductions to aid the recovery of such species can be seriously threatened by outbreaks of infectious disease. Intensive management strategies associated with conservation reintroductions can further compound these negative effects in such populations. Exploring the sublethal effects of disease outbreaks among natural populations is challenging and requires longitudinal, individual life-history data on patterns of reproductive success and other indicators of individual fitness. Long-term monitoring data concerning detailed reproductive information of the reintroduced Mauritius parakeet (Psittacula echo) population collected before, during and after a disease outbreak was investigated. Deleterious effects of an outbreak of beak and feather disease virus (BFDV) were revealed on hatch success, but these effects were remarkably short-lived and disproportionately associated with breeding pairs which took supplemental food. Individual BFDV infection status was not predicted by any genetic, environmental or conservation management factors and was not associated with any of our measures of immune function, perhaps suggesting immunological impairment. Experimental immunostimulation using the PHA (phytohaemagglutinin assay) challenge technique did, however, provoke a significant cellular immune response. We illustrate the resilience of this bottlenecked and once critically endangered, island-endemic species to an epidemic outbreak of BFDV and highlight the value of systematic monitoring in revealing inconspicuous but nonetheless substantial ecological interactions. Our study demonstrates that the emergence of such an infectious disease in a population ordinarily associated with increased susceptibility does not necessarily lead to deleterious impacts on population growth and that negative effects on reproductive fitness can be short-lived.


Subject(s)
Bird Diseases/epidemiology , Circoviridae Infections/veterinary , Psittacula/virology , Reproduction/physiology , Animals , Bird Diseases/virology , Circoviridae Infections/epidemiology , Circoviridae Infections/virology , Circovirus , Conservation of Natural Resources , Diet/veterinary , Endangered Species , Genetic Fitness , Mauritius , Psittacula/immunology , Psittacula/physiology
5.
Mol Phylogenet Evol ; 69(3): 581-92, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23906599

ABSTRACT

Introgression of genes through hybridization has been proposed to be an important driver of speciation, but in animals this has been shown only in relatively few cases until recently. Additionally, introgressive hybridization among non-sister species leads to a change in the gene tree topology of the concerned loci and thus complicates phylogenetic reconstruction. However, such cases of ancient introgression have been very difficult to demonstrate in birds. Here, we present such an example in an island bird subspecies, the Genovesa mockingbird (Mimus parvulus bauri). We assessed phylogenetic relationships and population structure among mockingbirds of the Galápagos archipelago using mitochondrial and nuclear DNA sequences, autosomal microsatellites, and morphological measurements. Mitochondrial haplotypes of Genovesa mockingbirds clustered closely with the haplotypes from two different species, San Cristóbal (M. melanotis) and Española (M. macdonaldi) mockingbirds. The same pattern was found for some haplotypes of two nuclear gene introns, while the majority of nuclear haplotypes of Genovesa mockingbirds were shared with other populations of the same species (M. parvulus). At 26 autosomal microsatellites, Genovesa mockingbirds grouped with other M. parvulus populations. This pattern shows that Genovesa mockingbirds contain mitochondria and some autosomal alleles that have most likely introgressed from M. melanotis into a largely M. parvulus background, making Genovesa mockingbirds a lineage of mixed ancestry, possibly undergoing speciation. Consistent with this hypothesis, mockingbirds on Genovesa are more clearly differentiated morphologically from other M. parvulus populations than M. melanotis is from M. parvulus.


Subject(s)
Evolution, Molecular , Genetics, Population , Passeriformes/classification , Phylogeny , Animals , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Ecuador , Haplotypes , Hybridization, Genetic , Microsatellite Repeats , Passeriformes/anatomy & histology , Passeriformes/genetics , Sequence Analysis, DNA
6.
Annu Rev Anim Biosci ; 1: 261-81, 2013 Jan.
Article in English | MEDLINE | ID: mdl-25387020

ABSTRACT

The genomics era has opened up exciting possibilities in the field of conservation biology by enabling genomic analyses of threatened species that previously were limited to model organisms. Next-generation sequencing (NGS) and the collection of genome-wide data allow for more robust studies of the demographic history of populations and adaptive variation associated with fitness and local adaptation. Genomic analyses can also advance management efforts for threatened wild and captive populations by identifying loci contributing to inbreeding depression and disease susceptibility, and predicting fitness consequences of introgression. However, the development of genomic tools in wild species still carries multiple challenges, particularly those associated with computational and sampling constraints. This review provides an overview of the most significant applications of NGS and the implications and limitations of genomic studies in conservation.


Subject(s)
Conservation of Natural Resources , Endangered Species , Genomics , Animal Distribution , Animals , Population Dynamics
7.
BMC Evol Biol ; 11: 284, 2011 Oct 03.
Article in English | MEDLINE | ID: mdl-21966954

ABSTRACT

BACKGROUND: Parasites are evolutionary hitchhikers whose phylogenies often track the evolutionary history of their hosts. Incongruence in the evolutionary history of closely associated lineages can be explained through a variety of possible events including host switching and host independent speciation. However, in recently diverged lineages stochastic population processes, such as retention of ancestral polymorphism or secondary contact, can also explain discordant genealogies, even in fully co-speciating taxa. The relatively simple biogeographic arrangement of the Galápagos archipelago, compared with mainland biomes, provides a framework to identify stochastic and evolutionary informative components of genealogic data in these recently diverged organisms. RESULTS: Mitochondrial DNA sequences were obtained for four species of Galápagos mockingbirds and three sympatric species of ectoparasites--two louse and one mite species. These data were complemented with nuclear EF1α sequences in selected samples of parasites and with information from microsatellite loci in the mockingbirds. Mitochondrial sequence data revealed differences in population genetic diversity between all taxa and varying degrees of topological congruence between host and parasite lineages. A very low level of genetic variability and lack of congruence was found in one of the louse parasites, which was excluded from subsequent joint analysis of mitochondrial data. The reconciled multi-species tree obtained from the analysis is congruent with both the nuclear data and the geological history of the islands. CONCLUSIONS: The gene genealogies of Galápagos mockingbirds and two of their ectoparasites show strong phylogeographic correlations, with instances of incongruence mostly explained by ancestral genetic polymorphism. A third parasite genealogy shows low levels of genetic diversity and little evidence of co-phylogeny with their hosts. These differences can mostly be explained by variation in life-history characteristics, primarily host specificity and dispersal capabilities. We show that pooling genetic data from organisms living in close ecological association reveals a more accurate phylogeographic history for these taxa. Our results have implications for the conservation and taxonomy of Galápagos mockingbirds and their parasites.


Subject(s)
Host-Parasite Interactions , Mites/physiology , Passeriformes/genetics , Passeriformes/parasitology , Phthiraptera/physiology , Phylogeny , Animals , Biological Evolution , DNA, Mitochondrial/genetics , Ecuador , Genetic Variation , Microsatellite Repeats , Mites/genetics , Mitochondria/genetics , Phthiraptera/genetics , Phylogeography
8.
J Wildl Dis ; 47(1): 94-106, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21270000

ABSTRACT

The Floreana Mockingbird (Mimus trifasciatus) is one of the rarest bird species in the world, with an estimated 550 individuals remaining on two rocky islets off the coast of Floreana, Galápagos, Ecuador, from which the main population was extirpated more than 100 yr ago. Because they have been listed in critical danger of extinction, a plan to reintroduce this species to Floreana has been initiated. Determining the health status of the source mockingbird populations is a top priority within the reintroduction plan. We report the health status, over the course of 4 yr, of 75 Floreana Mockingbirds on Champion Island and 160 Floreana Mockingbirds on Gardner-by-Floreana, based on physical examinations, hematology, hemolysis-hemagglutination assay, exposure to selected infectious disease agents, and ecto- and endoparasite counts. Birds on Gardner-by-Floreana had higher body condition index scores, packed cell volumes, total solids, and lymphocyte counts. Additionally, Gardner-by-Floreana birds had lower heterophil counts, eosinophil counts, and heterophil:lymphocyte ratios. No Chlamydophila psittaci DNA or antibodies to paramyxovirus-I, adenovirus-II, or Mycoplasma gallisepticum were found in any of the mockingbirds tested. Ectoparasites were present on birds from both islands, although species varied between islands. A coccidian species was found in eight of the 45 fecal samples from birds on Gardner-by-Floreana, but none of 33 birds examined from Champion. Birds on Gardner-by-Floreana were classified as healthier than those on Champion based on clinical and laboratory findings. These health data will be analyzed in conjunction with genetics, population structure, and disease presence on Floreana for developing recommendations for the Floreana Mockingbird reintroduction plan.


Subject(s)
Health Status , Passeriformes/blood , Animals , Animals, Wild/blood , Bird Diseases/blood , Bird Diseases/epidemiology , Blood Cell Count/veterinary , Blood Chemical Analysis/veterinary , Ecuador/epidemiology , Endangered Species , Female , Hematologic Tests/veterinary , Male , Parasitic Diseases, Animal/blood , Parasitic Diseases, Animal/epidemiology , Reference Values
9.
Philos Trans R Soc Lond B Biol Sci ; 365(1543): 1127-38, 2010 Apr 12.
Article in English | MEDLINE | ID: mdl-20194174

ABSTRACT

Small and isolated island populations provide ideal systems to study the effects of limited population size, genetic drift and gene flow on genetic diversity. We assessed genetic diversity within and differentiation among 19 mockingbird populations on 15 Galápagos islands, covering all four endemic species, using 16 microsatellite loci. We tested for signs of drift and gene flow, and used historic specimens to assess genetic change over the last century and to estimate effective population sizes. Within-population genetic diversity and effective population sizes varied substantially among island populations and correlated strongly with island size, suggesting that island size serves as a good predictor for effective population size. Genetic differentiation among populations was pronounced and increased with geographical distance. A century of genetic drift did not change genetic diversity on an archipelago-wide scale, but genetic drift led to loss of genetic diversity in small populations, especially in one of the two remaining populations of the endangered Floreana mockingbird. Unlike in other Galápagos bird species such as the Darwin's finches, gene flow among mockingbird populations was low. The clear pattern of genetically distinct populations reflects the effects of genetic drift and suggests that Galápagos mockingbirds are evolving in relative isolation.


Subject(s)
Gene Flow , Genetic Drift , Songbirds/genetics , Animals , DNA/chemistry , DNA/genetics , Ecuador , Genetic Variation , Genotype , Microsatellite Repeats , Polymerase Chain Reaction , Population Density , Regression Analysis
10.
Biol Lett ; 6(2): 212-5, 2010 Apr 23.
Article in English | MEDLINE | ID: mdl-19923141

ABSTRACT

The distribution of mockingbird species among the Galápagos Islands prompted Charles Darwin to question, for the first time in writing, the 'stability of species'. Some 50 years after Darwin's visit, however, the endemic Floreana mockingbird (Mimus trifasciatus) had become extinct on Floreana Island and, today, only two small populations survive on two satellite islets. As Darwin noted, rarity often precedes extinction. To avert extinction, plans are being developed to reintroduce M. trifasciatus to Floreana. Here, we integrate evolutionary thinking and conservation practice using coalescent analyses and genetic data from contemporary and museum samples, including two collected by Darwin and Robert Fitzroy on Floreana in 1835. Our microsatellite results show substantial differentiation between the two extant populations, but our coalescence-based modelling does not indicate long, independent evolutionary histories. One of the populations is highly inbred, but both harbour unique alleles present on Floreana in 1835, suggesting that birds from both islets should be used to establish a single, mixed population on Floreana. Thus, Darwin's mockingbird specimens not only revealed to him a level of variation that suggested speciation following geographical isolation but also, more than 170 years later, return important information to their place of origin for the conservation of their conspecifics.


Subject(s)
Biological Evolution , Conservation of Natural Resources/methods , Genetic Variation , Genetics, Population , Passeriformes/genetics , Animals , Ecuador , Gene Frequency , Genotype , Microsatellite Repeats/genetics , Models, Genetic , Species Specificity
11.
Trends Ecol Evol ; 22(12): 634-42, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17988758

ABSTRACT

Museums and other natural history collections (NHC) worldwide house millions of specimens. With the advent of molecular genetic approaches these collections have become the source of many fascinating population studies in conservation genetics that contrast historical with present-day genetic diversity. Recent developments in molecular genetics and genomics and the associated statistical tools have opened up the further possibility of studying evolutionary change directly. As we discuss here, we believe that NHC specimens provide a largely underutilized resource for such investigations. However, because DNA extracted from NHC samples is degraded, analyses of such samples are technically demanding and many potential pitfalls exist. Thus, we propose a set of guidelines that outline the steps necessary to begin genetic investigations using specimens from NHC.


Subject(s)
Genetics, Population/methods , Museums , Animals , Biological Evolution , Plants/genetics
12.
J Vector Ecol ; 28(1): 65-73, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12831130

ABSTRACT

Oviposition traps were used to follow changes in the population of Aedes aegypti (L.) (Diptera:Culicidae) in a seven-block area in midtown region of Tucson, Arizona. About 20,000 eggs were collected over a period from 1 June to 14 October 2000. Peak mosquito populations were correlated with the late summer rains. Mosquitoes seeking a blood meal were collected and dissected to determine if they had previously fed, i.e. if they were parous. Of the 241 females examined, 44% were parous, with a range from 0% to 80%. Females that had blood in their guts were collected and the source of blood was identified using an ELISA. Preliminary results suggest that 80% of them had fed on humans. These data suggest that the reproductive history of Tucson populations of Ae. aegypti could be conducive for transmission of dengue viruses.


Subject(s)
Aedes , Oviposition , Parity , Animals , Arizona , Blood , Dengue/transmission , Environmental Monitoring , Enzyme-Linked Immunosorbent Assay , Feeding Behavior , Humans , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...