Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 15(27): e1900520, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31120182

ABSTRACT

The agglomeration and self-assembly of gas-phase 1D materials in anthropogenic and natural systems dictate their resulting nanoscale morphology, multiscale hierarchy, and ultimate macroscale properties. Brownian motion induces collisions, upon which 1D materials often restructure to form bundles and can lead to aerogels. Herein, the first results of collision rates for 1D nanomaterials undergoing thermal transport are presented. The Langevin dynamic simulations of nanotube rotation and translation demonstrate that the collision kernels for rigid nanotubes or nanorods are ≈10 times greater than spherical systems. Resulting reduced order equations allow straightforward calculation of the physical parameters to determine the collision kernel for straight and curved 1D materials from 102 to 106 nm length. The collision kernels of curved 1D structures increase ≈1.3 times for long (>102 nm), and ≈5 times for short (≈102 nm) relative to rigid materials. Applications of collision frequencies allow the first kinetic analysis of aerogel self-assembly from gas-phase carbon nanotubes (CNTs). The timescales for CNT collision and bundle formation (0.3-42 s) agree with empirical residence times in CNT reactors (3-15 s). These results provide insights into the CNT length, number, and timescales required for aerogel formation, which bolsters our understanding of mass-produced 1D aerogel materials.

2.
Sci Rep ; 7(1): 14519, 2017 11 06.
Article in English | MEDLINE | ID: mdl-29109427

ABSTRACT

The floating catalyst chemical vapor deposition (FC-CVD) process permits macro-scale assembly of nanoscale materials, enabling continuous production of carbon nanotube (CNT) aerogels. Despite the intensive research in the field, fundamental uncertainties remain regarding how catalyst particle dynamics within the system influence the CNT aerogel formation, thus limiting effective scale-up. While aerogel formation in FC-CVD reactors requires a catalyst (typically iron, Fe) and a promotor (typically sulfur, S), their synergistic roles are not fully understood. This paper presents a paradigm shift in the understanding of the role of S in the process with new experimental studies identifying that S lowers the nucleation barrier of the catalyst nanoparticles. Furthermore, CNT aerogel formation requires a critical threshold of FexCy > 160 mg/m3, but is surprisingly independent of the initial catalyst diameter or number concentration. The robustness of the critical catalyst mass concentration principle is proved further by producing CNTs using alternative catalyst systems; Fe nanoparticles from a plasma spark generator and cobaltocene and nickelocene precursors. This finding provides evidence that low-cost and high throughput CNT aerogel routes may be achieved by decoupled and enhanced catalyst production and control, opening up new possibilities for large-scale CNT synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...