Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Metab ; 3(2): 124-34, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24634818

ABSTRACT

Insulin resistance is associated with mitochondrial dysfunction, but the mechanism by which mitochondria inhibit insulin-stimulated glucose uptake into the cytoplasm is unclear. The mitochondrial permeability transition pore (mPTP) is a protein complex that facilitates the exchange of molecules between the mitochondrial matrix and cytoplasm, and opening of the mPTP occurs in response to physiological stressors that are associated with insulin resistance. In this study, we investigated whether mPTP opening provides a link between mitochondrial dysfunction and insulin resistance by inhibiting the mPTP gatekeeper protein cyclophilin D (CypD) in vivo and in vitro. Mice lacking CypD were protected from high fat diet-induced glucose intolerance due to increased glucose uptake in skeletal muscle. The mitochondria in CypD knockout muscle were resistant to diet-induced swelling and had improved calcium retention capacity compared to controls; however, no changes were observed in muscle oxidative damage, insulin signaling, lipotoxic lipid accumulation or mitochondrial bioenergetics. In vitro, we tested 4 models of insulin resistance that are linked to mitochondrial dysfunction in cultured skeletal muscle cells including antimycin A, C2-ceramide, ferutinin, and palmitate. In all models, we observed that pharmacological inhibition of mPTP opening with the CypD inhibitor cyclosporin A was sufficient to prevent insulin resistance at the level of insulin-stimulated GLUT4 translocation to the plasma membrane. The protective effects of mPTP inhibition on insulin sensitivity were associated with improved mitochondrial calcium retention capacity but did not involve changes in insulin signaling both in vitro and in vivo. In sum, these data place the mPTP at a critical intersection between alterations in mitochondrial function and insulin resistance in skeletal muscle.

2.
Endocrinology ; 153(11): 5231-46, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22989629

ABSTRACT

Adiponectin is an adipokine whose plasma levels are inversely related to degrees of insulin resistance (IR) or obesity. It enhances glucose disposal and mitochondrial substrate oxidation in skeletal muscle and its actions are mediated through binding to receptors, especially adiponectin receptor 1 (AdipoR1). However, the in vivo significance of adiponectin sensitivity and the molecular mechanisms of muscle insulin sensitization by adiponectin have not been fully established. We used in vivo electrotransfer to overexpress AdipoR1 in single muscles of rats, some of which were fed for 6 wk with chow or high-fat diet (HFD) and then subjected to hyperinsulinemic-euglycemic clamp. After 1 wk, the effects on glucose disposal, signaling, and sphingolipid metabolism were investigated in test vs. contralateral control muscles. AdipoR1 overexpression (OE) increased glucose uptake and glycogen accumulation in the basal and insulin-treated rat muscle and also in the HFD-fed rats, locally ameliorating muscle IR. These effects were associated with increased phosphorylation of insulin receptor substrate-1, Akt, and glycogen synthase kinase-3ß. AdipoR1 OE also caused increased phosphorylation of p70S6 kinase, AMP-activated protein kinase, and acetyl-coA carboxylase as well as increased protein levels of adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain, and leucine zipper motif-1 and adiponectin, peroxisome proliferator activated receptor-γ coactivator-1α, and uncoupling protein-3, indicative of increased mitochondrial biogenesis. Although neither HFD feeding nor AdipoR1 OE caused generalized changes in sphingolipids, AdipoR1 OE did reduce levels of sphingosine 1-phosphate, ceramide 18:1, ceramide 20:2, and dihydroceramide 20:0, plus mRNA levels of the ceramide synthetic enzymes serine palmitoyl transferase and sphingolipid Δ-4 desaturase, changes that are associated with increased insulin sensitivity. These data demonstrate that enhancement of local adiponectin sensitivity is sufficient to improve skeletal muscle IR.


Subject(s)
Glucose/metabolism , Insulin Resistance/physiology , Insulin/pharmacology , Muscle, Skeletal/metabolism , Receptors, Adiponectin/metabolism , Signal Transduction/physiology , AMP-Activated Protein Kinases/metabolism , Adiponectin/metabolism , Animals , Glucose Clamp Technique , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Insulin Receptor Substrate Proteins/metabolism , Lysophospholipids/metabolism , Male , Muscle, Skeletal/drug effects , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Wistar , Receptors, Adiponectin/genetics , Signal Transduction/drug effects , Sphingosine/analogs & derivatives , Sphingosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...