Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 9(1): 668, 2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30679543

ABSTRACT

Understanding the degradation mechanisms of lead-halide perovskites (CH3NH3PbI3) under exposure to liquid/aerosol water is an essential problem within the photovoltaic community. Herein we investigate both the static and the dynamic properties of the methylammonuim cation (MA) as it coordinates with invading water molecules (MA.(H2O)n, n = 1, 2, 3, 4) using both stationary state quantum mechanics and first principle molecular dynamics simulations. Various solvation structures of MA were characterized by their stabilization energies, dipoles, and Maximally-Localized Wannier Function (MLWF) centers. Calculation - and analysis - of vibrational shifts in the IR spectral region were performed for hydrated complexes; the locations of [Formula: see text] stretching vibrations allude to significant hydrogen bonding between MA and the water molecules. Through Fourier analysis of the rotational dynamics on several MA · (H2O)n complexes, we conclude that the water molecules dampen the rotational motion of the MA as the intermolecular bonds formed between the water molecules and the MA act to hinder the rotation of the cation; these findings give explanatory support to earlier computational observations of humidity effects on perovskites (i.e., CH3NH3PbI3) materials. This work is a step toward understanding the water-MA cation interaction in bulk perovskites, thus providing greater understanding of in situ instability/degradation of perovskite bulk materials.

2.
Proc Natl Acad Sci U S A ; 116(37): 18263-18268, 2019 09 10.
Article in English | MEDLINE | ID: mdl-30093387

ABSTRACT

Recent work suggests that the long-lived coherences observed in both natural and artificial light-harvesting systems (such as the Fenna-Matthews-Olson complex) could be attributed to the mixing of the pigments' electronic and vibrational degrees of freedom. To investigate the underlying mechanism of these long coherence lifetimes, a sophisticated description of interactions between the molecular aggregates and the nonequilibrium fluctuations in the surrounding environment is necessary. This is done by implementing the hierarchical equations of motion approach on model homodimers, a method used in the intermediate coupling regime for many molecular aggregates wherein the nonequilibrium environment phonons play nontrivial roles in exciton dynamics. Here we report a character change in the vibronic states-reflective of property mixing between the electronic and vibrational states-induced by an interplay between system coupling parameters within the exciton-vibrational near-resonance regime. This mixing dictates vital aspects of coherence lifetime; by tracking the degree of mixing, we are able to elucidate the relationship between coherence lifetime and both the electronic energy fluctuation and the vibrational relaxation dephasing pathways.

3.
Proc Natl Acad Sci U S A ; 114(22): 5595-5600, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28500275

ABSTRACT

Recently, an alternative theory concerning the method by which olfactory proteins are activated has garnered attention. This theory proposes that the activation of olfactory G protein-coupled receptors occurs by an inelastic electron tunneling mechanism that is mediated through the presence of an agonist with an appropriate vibrational state to accept the inelastic portion of the tunneling electron's energy. In a recent series of papers, some suggestive theoretical evidence has been offered that this theory may be applied to nonolfactory G protein-coupled receptors (GPCRs), including those associated with the central nervous system (CNS). [Chee HK, June OS (2013) Genomics Inform 11(4):282-288; Chee HK, et al. (2015) FEBS Lett 589(4):548-552; Oh SJ (2012) Genomics Inform 10(2):128-132]. Herein, we test the viability of this idea, both by receptor affinity and receptor activation measured by calcium flux. This test was performed using a pair of well-characterized agonists for members of the 5-HT2 class of serotonin receptors, 2,5-dimethoxy-4-iodoamphetamine (DOI) and N,N-dimethyllysergamide (DAM-57), and their respective deuterated isotopologues. No evidence was found that selective deuteration affected either the binding affinity or the activation by the selected ligands for the examined members of the 5-HT2 receptor class.


Subject(s)
Amphetamines/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacology , Smell/physiology , Vibration , Enzyme Activation/physiology , Humans , Signal Transduction
4.
Sci Rep ; 7(1): 1066, 2017 04 21.
Article in English | MEDLINE | ID: mdl-28432300

ABSTRACT

The uncertainty relation is a fundamental limit in quantum mechanics and is of great importance to quantum information processing as it relates to quantum precision measurement. Due to interactions with the surrounding environment, a quantum system will unavoidably suffer from decoherence. Here, we investigate the dynamic behaviors of the entropic uncertainty relation of an atom-cavity interacting system under a bosonic reservoir during the crossover between Markovian and non-Markovian regimes. Specifically, we explore the dynamic behavior of the entropic uncertainty relation for a pair of incompatible observables under the reservoir-induced atomic decay effect both with and without quantum memory. We find that the uncertainty dramatically depends on both the atom-cavity and the cavity-reservoir interactions, as well as the correlation time, τ, of the structured reservoir. Furthermore, we verify that the uncertainty is anti-correlated with the purity of the state of the observed qubit-system. We also propose a remarkably simple and efficient way to reduce the uncertainty by utilizing quantum weak measurement reversal. Therefore our work offers a new insight into the uncertainty dynamics for multi-component measurements within an open system, and is thus important for quantum precision measurements.

5.
J Chem Phys ; 144(21): 214701, 2016 Jun 07.
Article in English | MEDLINE | ID: mdl-27276960

ABSTRACT

Methylamine is an abundant amine compound detected in the atmosphere which can affect the nature of atmospheric aerosol surfaces, changing their chemical and optical properties. Molecular dynamics simulation results show that methylamine accommodation on water is close to unity with the hydrophilic head group solvated in the interfacial environment and the methyl group pointing into the air phase. A detailed analysis of the hydrogen bond network indicates stronger hydrogen bonds between water and the primary amine group at the interface, suggesting that atmospheric trace gases will likely react with the methyl group instead of the solvated amine site. These findings suggest new chemical pathways for methylamine acting on atmospheric aerosols in which the methyl group is the site of orientation specific chemistry involving its conversion into a carbonyl site providing hydrophilic groups for uptake of additional water. This conversion may explain the tendency of aged organic aerosols to form cloud condensation nuclei. At the same time, formation of NH2 radical and formaldehyde is suggested to be a new source for NH2 radicals at aerosol surfaces, other than by reaction of absorbed NH3. The results have general implications for the chemistry of other amphiphilic organics, amines in particular, at the surface of atmospherically relevant aerosols.

6.
J Chem Phys ; 144(20): 204121, 2016 May 28.
Article in English | MEDLINE | ID: mdl-27250293

ABSTRACT

Radical halogen oxide species play important roles within atmospheric processes, specifically those responsible for the removal of O3. To facilitate future investigations on this family of compounds, RCCSD(T)/aug-cc-pVQZ-level electronic structure calculations were employed to generate individual-molecule optimized geometries, as well as to determine the global minimum energy structure for the BrO⋅H2O complex. This information facilitated the generation of several one-dimensional potential energy surface (PES) scans for the BrO⋅H2O complex. Scans were performed for both the ground state and the first excited state; this inclusion is due to a low-lying first electronic excited-state energy. These rigid-geometry PES scans were used both to generate a novel analytic interaction potential by modifying the existing Thole-type model used for water and to the fitted potential function. This interaction potential features anisotropic atomic polarizabilities facilitating appropriate modeling of the physics regarding the unpaired electron residing within the p-orbitals of the oxygen atom of the bromine oxide radical. The intention of this work is to facilitate future molecular dynamics simulations involving the interaction between the BrO radical and water clusters as a first step in devising possible novel chemistries taking place at the water interface of clouds within the atmosphere.

7.
Sci Rep ; 5: 9990, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25909758

ABSTRACT

G protein-coupled receptors (GPCRs) constitute a large family of receptor proteins that sense molecular signals on the exterior of a cell and activate signal transduction pathways within the cell. Modeling how an agonist activates such a receptor is fundamental for an understanding of a wide variety of physiological processes and it is of tremendous value for pharmacology and drug design. Inelastic electron tunneling spectroscopy (IETS) has been proposed as a model for the mechanism by which olfactory GPCRs are activated by a bound agonist. We apply this hyothesis to GPCRs within the mammalian nervous system using quantum chemical modeling. We found that non-endogenous agonists of the serotonin receptor share a particular IET spectral aspect both amongst each other and with the serotonin molecule: a peak whose intensity scales with the known agonist potencies. We propose an experiential validation of this model by utilizing lysergic acid dimethylamide (DAM-57), an ergot derivative, and its deuterated isotopologues; we also provide theoretical predictions for comparison to experiment. If validated our theory may provide new avenues for guided drug design and elevate methods of in silico potency/activity prediction.


Subject(s)
Receptors, Serotonin/metabolism , Cell Line , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Design , Electrons , Humans , Lysergic Acid Diethylamide/pharmacology , Models, Chemical , Quantum Theory , Receptors, Serotonin/chemistry , Serotonin Receptor Agonists/pharmacology , Signal Transduction/drug effects
8.
Interdiscip Sci ; 6(4): 312-22, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25519151

ABSTRACT

Cellular agent-based models are a technique that can be easily adapted to describe nuances of a particular cell type. Within we have concentrated on the cellular particularities of the human Endothelial Cell, explicitly the effects both of anchorage dependency and of heightened scaffold binding on the total confluence time of a system. By expansion of a discrete, homogeneous, asynchronous cellular model to account for several states per cell (phases within a cell's life); we accommodate and track dependencies of confluence time and population dynamics on these factors. Increasing the total motility time, analogous to weakening the binding between lattice and cell, affects the system in unique ways from increasing the average cellular velocity; each degree of freedom allows for control over the time length the system achieves logistic growth and confluence. These additional factors may allow for greater control over behaviors of the system. Examinations of system's dependence on both seed state velocity and binding are also enclosed.


Subject(s)
Cell Cycle , Cell Movement , Computer Simulation , Endothelial Cells/physiology , Guided Tissue Regeneration , Models, Biological , Algorithms , Humans , Tissue Scaffolds
9.
J Phys Chem A ; 117(50): 13465-80, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-23964703

ABSTRACT

The state-dependent spectroscopy of α-methylbenzyl radical (α-MeBz) has been studied under jet-cooled conditions. Two-color resonant two-photon ionization (2C-R2PI), laser-induced fluorescence, and dispersed fluorescence spectra were obtained for the D0-D1 electronic transition of this prototypical resonance-stabilized radical in which the methyl group is immediately adjacent to the primary radical site. Extensive Franck-Condon activity in hindered rotor levels was observed in the excitation spectrum, reflecting a reorientation of the methyl group upon electronic excitation. Dispersed fluorescence spectra from the set of internal rotor levels are combined with the excitation spectrum to obtain a global fit of the barrier heights and angular change of the methyl group in both D0 and D1 states. The best-fit methyl rotor potential in the ground electronic state (D0) is a flat-topped 3-fold potential (V3" = 151 cm(-1), V6" = 34 cm(-1)) while the D1 state has a lower barrier (V3' = 72 cm(-1), V6' = 15 cm(-1)) with Δφ = ± π/3, π, consistent with a reorientation of the methyl group upon electronic excitation. The ground state results are compared with calculations carried out at the DFT B3LYP level of theory using the 6-311+G(d,p) basis set, and a variety of excited state calculations are carried out to compare against experiment. The preferred geometry of the methyl rotor in the ground state is anti, which switches to syn in the D1 state and in the cation. The calculations uncover a subtle combination of effects that contribute to the shift in orientation and change in barrier in the excited state relative to ground state. Steric interaction favors the anti conformation, while hyperconjugation is greater in the syn orientation. The presence of a second excited state close by D1 is postulated to influence the methyl rotor properties. A resonant ion-dip infrared (RIDIR) spectrum in the alkyl and aromatic CH stretch regions was also recorded, probing in a complementary way the state-dependent conformation of α-MeBz. Using a scheme in which infrared depletion occurs between excitation and ionization steps of the 2C-R2PI process, analogous infrared spectra in D1 were also obtained, probing the response of the CH stretch fundamentals to electronic excitation. A reduced-dimension Wilson G-matrix model was implemented to simulate and interpret the observed infrared results. Finally, photoionization efficiency scans were carried out to determine the adiabatic ionization threshold of α-MeBz (IP = 6.835 ± 0.002 eV) and provide thresholds for ionization out of specific internal rotor levels, which report on the methyl rotor barrier in the cation state.

10.
J Chem Phys ; 136(3): 034114, 2012 Jan 21.
Article in English | MEDLINE | ID: mdl-22280751

ABSTRACT

We present a theoretical framework which describes multiply charged atomic ions, their stability within super-intense laser fields, and also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H(-), H(2 -), He, He(-), He(2 -), He(3 -) within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind "additional" electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown. These nodes are spaced far enough from each other to minimize the electronic repulsion of the electrons, while still providing adequate enough attraction so as to bind the excess electrons into orbitals. We have found that even with relativistic considerations these species are stably bound within the field. It was also found that performing the dimensional scaling calculations for systems within the confines of laser fields to be a much simpler and more cost-effective method than the supporting D = 3 SCF method. The dimensional scaling method is general and can be extended to include relativistic corrections to describe the stability of simple molecular systems in super-intense laser fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...