Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurophysiol ; 115(4): 2199-213, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26843602

ABSTRACT

Recent evidence suggests that synaptic refinement, the reorganization of synapses and connections without significant change in their number or strength, is important for the development of the visual system of juvenile rodents. Other evidence in rodents and humans shows that there is a marked drop in sleep slow-wave activity (SWA) during adolescence. Slow waves reflect synchronous transitions of neuronal populations between active and inactive states, and the amount of SWA is influenced by the connection strength and organization of cortical neurons. In this study, we investigated whether synaptic refinement could account for the observed developmental drop in SWA. To this end, we employed a large-scale neural model of primary visual cortex and sections of the thalamus, capable of producing realistic slow waves. In this model, we reorganized intralaminar connections according to experimental data on synaptic refinement: during prerefinement, local connections between neurons were homogenous, whereas in postrefinement, neurons connected preferentially to neurons with similar receptive fields and preferred orientations. Synaptic refinement led to a drop in SWA and to changes in slow-wave morphology, consistent with experimental data. To test whether learning can induce synaptic refinement, intralaminar connections were equipped with spike timing-dependent plasticity. Oriented stimuli were presented during a learning period, followed by homeostatic synaptic renormalization. This led to activity-dependent refinement accompanied again by a decline in SWA. Together, these modeling results show that synaptic refinement can account for developmental changes in SWA. Thus sleep SWA may be used to track noninvasively the reorganization of cortical connections during development.


Subject(s)
Brain Waves , Models, Neurological , Sleep , Synaptic Potentials , Animals , Humans , Neurogenesis , Neurons/physiology , Thalamus/cytology , Thalamus/growth & development , Thalamus/physiology , Visual Cortex/cytology , Visual Cortex/growth & development , Visual Cortex/physiology
2.
Neurosci Conscious ; 2016(1): niw012, 2016.
Article in English | MEDLINE | ID: mdl-30788150

ABSTRACT

Causal interactions within complex systems such as the brain can be analyzed at multiple spatiotemporal levels. It is widely assumed that the micro level is causally complete, thus excluding causation at the macro level. However, by measuring effective information-how much a system's mechanisms constrain its past and future states-we recently showed that causal power can be stronger at macro rather than micro levels. In this work, we go beyond effective information and consider additional requirements of a proper measure of causal power from the intrinsic perspective of a system: composition (the cause-effect power of the parts), state-dependency (the cause-effect power of the system in a specific state); integration (the causal irreducibility of the whole to its parts), and exclusion (the causal borders of the system). A measure satisfying these requirements, called Φ Max, was developed in the context of integrated information theory. Here, we evaluate Φ Max systematically at micro and macro levels in space and time using simplified neuronal-like systems. We show that for systems characterized by indeterminism and/or degeneracy, Φ can indeed peak at a macro level. This happens if coarse-graining micro elements produces macro mechanisms with high irreducible causal selectivity. These results are relevant to a theoretical account of consciousness, because for integrated information theory the spatiotemporal maximum of integrated information fixes the spatiotemporal scale of consciousness. More generally, these results show that the notions of macro causal emergence and micro causal exclusion hold when causal power is assessed in full and from the intrinsic perspective of a system.

3.
Proc Natl Acad Sci U S A ; 110(49): 19790-5, 2013 Dec 03.
Article in English | MEDLINE | ID: mdl-24248356

ABSTRACT

Causal interactions within complex systems can be analyzed at multiple spatial and temporal scales. For example, the brain can be analyzed at the level of neurons, neuronal groups, and areas, over tens, hundreds, or thousands of milliseconds. It is widely assumed that, once a micro level is fixed, macro levels are fixed too, a relation called supervenience. It is also assumed that, although macro descriptions may be convenient, only the micro level is causally complete, because it includes every detail, thus leaving no room for causation at the macro level. However, this assumption can only be evaluated under a proper measure of causation. Here, we use a measure [effective information (EI)] that depends on both the effectiveness of a system's mechanisms and the size of its state space: EI is higher the more the mechanisms constrain the system's possible past and future states. By measuring EI at micro and macro levels in simple systems whose micro mechanisms are fixed, we show that for certain causal architectures EI can peak at a macro level in space and/or time. This happens when coarse-grained macro mechanisms are more effective (more deterministic and/or less degenerate) than the underlying micro mechanisms, to an extent that overcomes the smaller state space. Thus, although the macro level supervenes upon the micro, it can supersede it causally, leading to genuine causal emergence--the gain in EI when moving from a micro to a macro level of analysis.


Subject(s)
Information Theory , Models, Theoretical , Systems Biology/methods , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...