Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Plants (Basel) ; 11(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35270069

ABSTRACT

Balms and resins of Picea abies, Larix decidua, and Pinus nigra are traditionally used to treat wounds. Three chromatographic techniques differing in separation capacity and technical demands were employed to distinguish among these plant exudates. A TLC method was established for fingerprint comparison, providing a quick overview of a large number of samples at low cost. HPLC-DAD (RP18) and UHPSFC-DAD (Torus 2-Picolylamin), hyphenated to ESI-MS, represented orthogonal chromatographic systems with high separation performance. The developed methods allow for the separation and detection of major and minor constituents belonging to different compound classes (phenyl carboxylic acids, lignans, diterpene resin acids). The qualitative compositions of the diterpene resin acids, the main compounds in the exudates, were comparable in all three genera. Differences were detected in the distribution of hydroxylated diterpene resin acids, pinoresinol, and hydroxycinnamic acids. The three tested chromatographic systems with varying demands on lab equipment offer appropriate tools for the quality assessment of Picea abies, Larix decidua, and Pinus nigra. The extracts were furthermore tested at three different concentrations (10 µg/mL, 3 µg/mL, and 1 µg/mL) for boosted re-epithelialization, a crucial step in the wound-healing process, in an in vitro HaCaT keratinocyte-based scratch assay. Lysophosphatidic acid (LPA, 10 µM) and extracts of several medicinal plants well known for their wound-healing properties (birch, marigold, St. John's wort, manuka honey) were used as positive controls. Picea abies and Pinus nigra showed concentration dependency; significant activity was measured for Larix decidua at 3 µg/mL.

2.
Planta Med ; 86(15): 1080-1088, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32316044

ABSTRACT

The balm of the Norway spruce (Picea abies) is a well-known traditional herbal medicine used to cure wounds. Even though clinical trials have confirmed its empirical use, the active constituents, their mode of action, and the exact composition of this natural product are still unknown. In this study, the balm was subjected to fractionated extraction and further purified employing flash chromatography, HPLC-PDA-ELSD, preparative and analytical TLC. Hydroxycinnamic acids ( 1: - 3: ), the lignan pinoresinol ( 4: ), four hydroxylated derivatives of dehydroabietic acid (DHAA) ( 5:  -  8: ), and dehydroabietic acid ( 9: ) were isolated. Their structures were elucidated by LC-MS, 1D- and 2D-NMR. Four extracts, two commercially available resin acids-pimaric acid ( 10: ) and isopimaric acid ( 11: )-and the isolated compounds were tested for increased re-epithelialization of cell-free areas in a human adult low calcium high temperature keratinocytes monolayer. Lysophosphatidic acid (10 µM) served as positive control and ranged between 100% and 150% rise in cell-covered area related to the vehicle control. Two extracts containing carboxylic acids and non-acidic apolar constituents, respectively, boosted wound closure by 47% and 36% at 10 and 3 µg/mL, respectively. Pinoresinol, DHAA, three of its hydroxylated derivatives, and pimaric and isopimaric acid as well as defined combinations of the hydroxylated DHAA derivatives led to a significantly enhanced wound closure by up to 90% at concentrations between 1 and 10 µM. Overall, lignans and diterpene resin acids, main constituents of Norway spruce balm, are able to increase migration or proliferation of keratinocytes in vitro. The presented data link the phytochemistry of this natural wound healing agent with boosted re-epithelialization.


Subject(s)
Picea , Chromatography, High Pressure Liquid , Norway , Phytochemicals/pharmacology , Re-Epithelialization
SELECTION OF CITATIONS
SEARCH DETAIL
...