Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Orthop ; 9(1): 22, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35229207

ABSTRACT

PURPOSE: Ethical concerns and increasing economic constraints of hospitals have caused a reduction in proper training and education. It has been hypothesized that due to the lack of a one-to-one apprenticeship throughout the residency, surgical simulation training is essential. METHODS: Between June 2020 and June 2021, residents from teaching hospitals in Switzerland, France, Germany, and Luxembourg were surveyed to learn about their experience with and thoughts on surgical simulation training. Survey responses were analysed using descriptive statistics. RESULTS: Of the 596 residents surveyed, 557 residents (51% female, 49% male) from Switzerland (270), France (214), Germany (52) and Luxembourg (21) agreed to anonymous data analysis. Among those giving consent, 100% considered that simulation training was important for their practical education and 84% thought that simulation training should become a mandatory part of their curriculum, with an average estimated training time of 42 ± 51 h per year, based on the survey. CONCLUSIONS: This study suggests that surgical simulation training is well accepted and even demanded among surgical residents as an alternative training solution able to address some of the limitations and challenges of the current one-to-one apprenticeship model. There is a wide variation among the residents regarding the number of training hours required, underscoring the need for structured performance-based simulator training.

2.
Metab Eng ; 34: 80-87, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26711083

ABSTRACT

The development of lignocellulose as a sustainable resource for the production of fuels and chemicals will rely on technology capable of converting the raw materials into useful compounds; some such transformations can be achieved by biological processes employing engineered microorganisms. Towards the goal of valorizing the hemicellulose fraction of lignocellulose, we designed and validated a set of pathways that enable efficient utilization of pentoses for the biosynthesis of notable two-carbon products. These pathways were incorporated into Escherichia coli, and engineered strains produced ethylene glycol from various pentoses, including simultaneously from D-xylose and L-arabinose; one strain achieved the greatest reported titer of ethylene glycol, 40 g/L, from D-xylose at a yield of 0.35 g/g. The strategy was then extended to another compound, glycolate. Using D-xylose as the substrate, an engineered strain produced 40 g/L glycolate at a yield of 0.63 g/g, which is the greatest reported yield to date.


Subject(s)
Conservation of Natural Resources/methods , Escherichia coli/metabolism , Ethylene Glycol/metabolism , Glycolates/metabolism , Metabolic Networks and Pathways/physiology , Pentoses/metabolism , Escherichia coli/genetics , Ethylene Glycol/isolation & purification , Glycolates/isolation & purification , Metabolic Engineering/methods , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...