Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Microbiol Immunol (Bp) ; 8(4): 142-148, 2018 Dec 23.
Article in English | MEDLINE | ID: mdl-30719331

ABSTRACT

Photoinactivation of bacteria with visible light has been reported in numerous studies. Radiation around 405 nm is absorbed by endogenous porphyrins and generates reactive oxygen species that destroy bacteria from within. Blue light in the spectral range of 450-470 nm also exhibits an antibacterial effect, but it is weaker than 405 nm radiation, and the photosensitizers involved have not been clarified yet, even though flavins and porphyrins are possible candidates. There are significantly fewer photoinactivation studies on fungi. To test if visible light can inactivate fungi and to elucidate the mechanisms involved, the model organism Saccharomyces cerevisiae (DSM no. 70449) was irradiated with violet (405 nm) and blue (450 nm) light. The mean irradiation doses required for a one log reduction of colony forming units for this strain were 182 J/cm2 and 526 J/cm2 for 405 nm and 450 nm irradiation, respectively. To investigate the cell damaging mechanisms, trypan blue staining was performed. However, even strongly irradiated cultures hardly showed any stained S. cerevisiae cells, indicating an intact cell membrane and thus arguing against the previously suspected mechanism of cell membrane damage during photoinactivation with visible light at least for the investigated strain. The results are compatible with photoinactivated Saccharomyces cerevisiae cells being in a viable but nonculturable state. To identify potential fungal photosensitizers, the absorption and fluorescence of Saccharomyces cerevisiae cell lysates were determined. The spectral absorption and fluorescence results are in favor of protoporphyrin IX as the most important photosensitizer at 405 nm radiation. For 450 nm irradiation, riboflavin and other flavins may be the main photosensitizer candidates, since porphyrins do not play a prominent role at this wavelength. No evidence of the involvement of other photosensitizers was found in the spectral data of this strain.

2.
Eur J Microbiol Immunol (Bp) ; 7(2): 146-149, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28690882

ABSTRACT

In this study, the photoinactivation of Legionella by visible light is investigated. The success of this approach would offer new prospects for technical water disinfection and maybe even for therapeutic measures in cases of Legionella infections. Therefore, Legionella rubrilucens was dispensed on buffered charcoal yeast extract medium agar plates and illuminated with different doses of violet light generated by 405 nm light-emitting diodes (LEDs). A strong photoinactivation effect was observed. A dose of 125 J/ cm2 reduced the bacterial concentration by more than 5 orders of magnitude compared to Legionella on unirradiated agar plates. The necessary dose for a one log-level reduction was about 24 J/cm2. These results were obtained for extracellular L. rubrilucens, but other Legionella species may exhibit a similar behavior.

3.
FEMS Microbiol Lett ; 364(2)2017 Jan.
Article in English | MEDLINE | ID: mdl-27915252

ABSTRACT

Visible light has strong disinfectant properties, a fact that is not well known in comparison to the antibacterial properties of UV light. This review compiles the published data on bacterial inactivation caused by visible light and endogenous photosensitizers. It evaluates more than 50 published studies containing information on about 40 different bacterial species irradiated within the spectral range from 380 to 780 nm. In the available data a high variability of photoinactivation sensitivity is observed, which may be caused by undefined illumination conditions. Under aerobic conditions almost all bacteria except spores should be reduced by at least three log-levels with a dose of about 500 J cm-2 of 405 nm irradiation, including both Gram-positive as well as Gram-negative microorganisms. Irradiation of 470 nm is also appropriate for photoinactivating all bacteria species investigated so far but compared to 405 nm illumination it is less effective by a factor between 2 and 5. The spectral dependence of the observed photoinactivation sensitivities gives reason to the assumption that a so far unknown photosensitizer may be involved at 470 nm photoinactivation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Light , Microbial Viability/radiation effects , Photosensitizing Agents/pharmacology , Aerobiosis , Color , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...