Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Rep ; 11(1): 24473, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34963696

ABSTRACT

Bacteria belonging to the group of ESKAPE pathogens are responsible for the majority of nosocomial infections. Due to the increase of antibiotic resistance, alternative treatment strategies are of high clinical relevance. In this context visible light as disinfection technique represents an interesting option as microbial pathogens can be inactivated without adjuvants. However cytotoxic effects of visible light on host cells have also been reported. We compared the cytotoxicity of violet and blue light irradiation on monocytic THP-1 and alveolar epithelium A549 cells with the inactivation effect on ESKAPE pathogens. THP-1 cells displayed a higher susceptibility to irradiation than A549 cells with first cytotoxic effects occurring at 300 J cm-2 (405 nm) and 400 J cm-2 (450 nm) in comparison to 300 J cm-2 and 1000 J cm-2, respectively. We could define conditions in which a significant reduction of colony forming units for all ESKAPE pathogens, except Enterococcus faecium, was achieved at 405 nm while avoiding cytotoxicity. Irradiation at 450 nm demonstrated a more variable effect which was species and medium dependent. In summary a significant reduction of viable bacteria could be achieved at subtoxic irradiation doses, supporting a potential use of visible light as an antimicrobial agent in clinical settings.


Subject(s)
Bacteria/radiation effects , Cell Culture Techniques , Light , A549 Cells , Cell Culture Techniques/methods , Cell Survival/radiation effects , Culture Media/chemistry , Humans , Light/adverse effects , THP-1 Cells
2.
BMC Res Notes ; 14(1): 187, 2021 May 17.
Article in English | MEDLINE | ID: mdl-34001258

ABSTRACT

OBJECTIVE: Ultraviolet radiation is known for its antimicrobial properties but unfortunately, it could also harm humans. Currently, disinfection techniques against SARS-CoV-2 are being sought that can be applied on air and surfaces and which do not pose a relevant thread to humans. In this study, the bacteriophage phi6, which like SARS-CoV-2 is an enveloped RNA virus, is irradiated with visible blue light at a wavelength of 455 nm. RESULTS: For the first time worldwide, the antiviral properties of blue light around 455 nm can be demonstrated. With a dose of 7200 J/cm2, the concentration of this enveloped RNA virus can be successfully reduced by more than three orders of magnitude. The inactivation mechanism is still unknown, but the sensitivity ratio of phi6 towards blue and violet light hints towards an involvement of photosensitizers of the host cells. Own studies on coronaviruses cannot be executed, but the results support speculations about blue-susceptibility of coronaviruses, which might allow to employ blue light for infection prevention or even therapeutic applications.


Subject(s)
COVID-19 , Ultraviolet Rays , Antiviral Agents , Humans , Light , SARS-CoV-2 , Virus Inactivation
3.
Antibiotics (Basel) ; 10(3)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33807025

ABSTRACT

Interest in visible light irradiation as a microbial inactivation method has widely increased due to multiple possible applications. Resistance development is considered unlikely, because of the multi-target mechanism, based on the induction of reactive oxygen species by wavelength specific photosensitizers. However, the affected targets are still not completely identified. We investigated membrane integrity with the fluorescence staining kit LIVE/DEAD® BacLight™ on a Gram positive and a Gram negative bacterial species, irradiating Staphylococcus carnosus and Pseudomonas fluorescens with 405 nm and 450 nm. To exclude the generation of viable but nonculturable (VBNC) bacterial cells, we applied an ATP test, measuring the loss of vitality. Pronounced uptake of propidium iodide was only observed in Pseudomonas fluorescens at 405 nm. Transmission electron micrographs revealed no obvious differences between irradiated samples and controls, especially no indication of an increased bacterial cell lysis could be observed. Based on our results and previous literature, we suggest that visible light photoinactivation does not lead to rapid bacterial cell lysis or disruption. However, functional loss of membrane integrity due to depolarization or inactivation of membrane proteins may occur. Decomposition of the bacterial envelope following cell death might be responsible for observations of intracellular component leakage.

4.
Healthcare (Basel) ; 9(3)2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33799642

ABSTRACT

The globally observed rise in bacterial resistance against antibiotics has increased the need for alternatives to antibiotic treatments. The most prominent and important pathogen bacteria are the ESKAPE pathogens, which include among others Staphylococcus aureus, Klebsiella pneumoniae and Acinetobacter baumannii. These species cause ventilator-associated pneumonia (VAP), which accounts for 24% of all nosocomial infections. In this study we tested the efficacy of photoinactivation with 405 nm violet light under conditions comparable to an intubated patient with artificial saliva for bacterial suspension at 37 °C. A technical trachea model was developed to investigate the visible light photoinactivation of Staphylococcus carnosus as a non-pathogen surrogate of the ESKAPE pathogen S. aureus (MRSA). The violet light was coupled into the tube with a fiber optic setup. The performed tests proved, that photoinactivation at 37 °C is more effective with a reduction of almost 3 log levels (99.8%) compared to 25 °C with a reduction of 1.2 log levels. The substitution of phosphate buffered saline (PBS) by artificial saliva solution slightly increased the efficiency during the experimental course. The increased efficiency might be caused by a less favorable environment for bacteria due to for example the ionic composition.

5.
Photochem Photobiol ; 97(1): 122-125, 2021 01.
Article in English | MEDLINE | ID: mdl-33128245

ABSTRACT

To stop the coronavirus spread, new inactivation approaches are being sought that can also be applied in the presence of humans or even on humans. Here, we investigate the effect of visible violet light with a wavelength of 405 nm on the coronavirus surrogate phi6 in two aqueous solutions that are free of photosensitizers. A dose of 1300 J cm-2 of 405 nm irradiation reduces the phi6 plaque-forming unit concentration by three log-levels. The next step should be similar visible light photoinactivation investigations on coronaviruses, which cannot be performed in our lab.


Subject(s)
Light , SARS-CoV-2/radiation effects , Humans , Microbial Viability/radiation effects , Reproducibility of Results , SARS-CoV-2/growth & development , Viral Plaque Assay
6.
Article in English | MEDLINE | ID: mdl-32899295

ABSTRACT

Multiple use contact lenses have to be disinfected overnight to reduce the risk of infections. However, several studies demonstrated that not only microorganisms are affected by the disinfectants, but also ocular epithelial cells, which come into contact via residuals at reinsertion of the lens. Visible light has been demonstrated to achieve an inactivation effect on several bacterial and fungal species. Combinations with other disinfection methods often showed better results compared to separately applied methods. We therefore investigated contact lens disinfection solutions combined with 405 nm irradiation, with the intention to reduce the disinfectant concentration of ReNu Multiplus, OptiFree Express or AOSept while maintaining adequate disinfection results due to combination benefits. Pseudomonads, staphylococci and E. coli were studied with disk diffusion assay, colony forming unit (cfu) determination and growth delay. A log reduction of 4.49 was achieved for P. fluorescens in 2 h for 40% ReNu Multiplus combined with an irradiation intensity of 20 mW/cm2 at 405 nm. For AOSept the combination effect was so strong that 5% of AOSept in combination with light exhibited the same result as 100% AOSept alone. Combination of disinfectants with visible violet light is therefore considered a promising approach, as a reduction of potentially toxic ingredients can be achieved.


Subject(s)
Contact Lenses , Disinfectants , Disinfection , Light , Colony Count, Microbial , Escherichia coli
7.
GMS Hyg Infect Control ; 15: Doc16, 2020.
Article in English | MEDLINE | ID: mdl-32733781

ABSTRACT

Background: Healthcare workers and large parts of the population are currently using personal protective equipment, such as face masks, to avoid infections with the novel coronavirus SARS-CoV-2. This equipment must be sterilized as gently as possible before reuse. One possibility is thermal inactivation, but professional autoclaves with their high temperatures are often not available or suitable. If the inactivation period is long enough, coronavirus inactivation can also be carried out at relatively low temperatures. The required duration was determined in this study. Material and methods: Data from published thermal inactivation studies on coronaviruses were applied to determine the temperature dependence of the rate constant k(T) for each coronavirus by employing Arrhenius models. Results: The data obtained exhibit large variations, which appear to be at least partially caused by different sample properties. Samples with high protein content or samples in dry air sometimes seem to be more difficult to inactivate. Apart from this, the Arrhenius models describe the thermal inactivation properties well and SARS-CoV and SARS-CoV-2 can even be represented by a combined model. Furthermore, the available data suggest that all samples, including critical ones, can be mathematically included by a worst-case Arrhenius model. Conclusion: Coronaviruses can already be inactivated at relatively low temperatures. For most samples, application times of approximately 32.5, 3.7, and 0.5 minutes will be sufficient at 60°C, 80°C, and 100°C, respectively, for a 5 log-reduction. For difficult conditions, the worst-case model provides significantly longer application times of 490, 55, and 8 minutes for the temperatures mentioned.

8.
Front Microbiol ; 11: 612367, 2020.
Article in English | MEDLINE | ID: mdl-33519770

ABSTRACT

Due to the globally observed increase in antibiotic resistance of bacterial pathogens and the simultaneous decline in new antibiotic developments, the need for alternative inactivation approaches is growing. This is especially true for the treatment of infections with the problematic ESKAPE pathogens, which include Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, and often exhibit multiple antibiotic resistances. Irradiation with visible light from the violet and blue spectral range is an inactivation approach that does not require any additional supplements. Multiple bacterial and fungal species were demonstrated to be sensitive to this disinfection technique. In the present study, pathogenic ESKAPE organisms and non-pathogenic relatives are irradiated with visible blue and violet light with wavelengths of 450 and 405 nm, respectively. The irradiation experiments are performed at 37°C to test a potential application for medical treatment. For all investigated microorganisms and both wavelengths, a decrease in colony forming units is observed with increasing irradiation dose, although there are differences between the examined bacterial species. A pronounced difference can be observed between Acinetobacter, which prove to be particularly light sensitive, and enterococci, which need higher irradiation doses for inactivation. Differences between pathogenic and non-pathogenic bacteria of one genus are comparatively small, with the tendency of non-pathogenic representatives being less susceptible. Visible light irradiation is therefore a promising approach to inactivate ESKAPE pathogens with future fields of application in prevention and therapy.

9.
Photochem Photobiol ; 96(1): 156-169, 2020 01.
Article in English | MEDLINE | ID: mdl-31556126

ABSTRACT

Inactivation properties of visible light are of increasing interest due to multiple possible fields of application concerning antibacterial treatment. For violet wavelengths, the generation of reactive oxygen species by porphyrins is accepted as underlying mechanism. However, there is still little knowledge about photosensitizers at blue wavelengths. While flavins were named as possible candidates, there is still no experimental evidence. This study investigates the photoinactivation sensitivity of Staphylococcus carnosus to selected wavelengths between 390 and 500 nm in 10- to 25-nm intervals. Absorption and fluorescence measurements in bacterial lysates confirmed inactivation findings. By means of a mathematical calculation in MATLAB® , a fit of different photosensitizer absorption spectra to the measured action spectrum was determined to gain knowledge about the extent to which specific photosensitizers are involved. The most effective wavelength for S. carnosus at 415 nm could be explained by the involvement of zinc protoporphyrin IX. Between 450 and 470 nm, inactivation results indicated a broad plateau, statistically distinguishable from 440 and 480 nm. This observation points to flavins as responsible photosensitizers, which furthermore seem to be involved at violet wavelengths. A spectral scan of sensitivities might generally be an advantageous approach for examining irradiation impact.


Subject(s)
Light , Staphylococcus/radiation effects , Colony Count, Microbial , Microbial Viability/radiation effects , Reactive Oxygen Species/metabolism
10.
Biomed Tech (Berl) ; 65(4): 485-490, 2020 Aug 27.
Article in English | MEDLINE | ID: mdl-31809261

ABSTRACT

This study presents a device for efficient, low-cost and eye-friendly overnight disinfection of contact lenses by visible violet light as an alternative to disinfection with biocide-containing solutions. Bacterial solutions with one Pseudomonas and one Staphylococcus strain each were irradiated for up to 8 h in commercial transparent contact lens cases by the presented light-emitting diode (LED) device. Samples were taken at different intervals and distributed on agar plates. The surviving bacteria were determined by counting of colony-forming units and compared to the specific requirements of the stand-alone test for contact lens disinfection of the hygiene standard ISO 14729. The concentration of both microorganisms was reduced by three orders of magnitude after less than 4 h of irradiation. The LED current and intensity have not yet been at maximum and could be further increased if necessary for other microorganisms. The presented device fulfils the requirement of the stand-alone test of the contact lens hygienic standard ISO 14729 for the tested Pseudomonas and Staphylococcus strains. According to literature data, the inactivation of Serratia marcescens, Candida albicans and Fusarium solani seems also possible, but may require increased LED current and intensity.


Subject(s)
Contact Lenses/microbiology , Disinfectants/chemistry , Fusarium/chemistry , Bacteria/chemistry , Contact Lens Solutions , Disinfection , Light
11.
Antibiotics (Basel) ; 8(4)2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31618994

ABSTRACT

Despite the high number of legionella infections, there are currently no convincing preventive measures. Photoinactivation with visible light is a promising new approach and the photoinactivation sensitivity properties of planktonic Legionella rubrilucens to 450, 470, and 620 nm irradiation were thus investigated and compared to existing 405 nm inactivation data for obtaining information on responsible endogenous photosensitizers. Legionella were streaked on agar plates and irradiated with different doses by light emitting diodes (LEDs) of different visible wavelengths. When irradiating bacterial samples with blue light of 450 nm, a 5-log reduction could be achieved by applying a dose of 300 J cm-2, whereas at 470 nm, a comparable reduction required about 500 J cm-2. For red irradiation at 620 nm, no inactivation could be observed, even at 500 J cm-2. The declining photoinactivation sensitivity with an increasing wavelength is consistent with the assumption of porphyrins and flavins being among the relevant photosensitizers. These results were obtained for L. rubrilucens, but there is reason to believe that its inactivation behavior is similar to that of pathogenic legionella species. Therefore, this photoinactivation might lead to new future concepts for legionella reduction and prevention in technical applications or even on or inside the human body.

12.
GMS Hyg Infect Control ; 12: Doc06, 2017.
Article in English | MEDLINE | ID: mdl-28451517

ABSTRACT

Background: Despite the great health significance of Legionella, there is only little information on their UV sensitivity. Besides Legionella pneumophila only L. longbeachae has been investigated so far. Methods: In this study L. rubrilucens has been spread on buffered charcoal yeast extract agar and irradiated with the 254 nm UV-C emission of a mercury vapor lamp. The disinfection success is measured by colony counting after incubation and comparison of the number of colonies on irradiated and unirradiated reference agar plates. Results: The average log-reduction dose is 1.08 mJ/cm2 for free L. rubrilucens, which is at the lower end of the so far published Legionella log-reduction values, but all three Legionella species show similar UV-C sensitivities. Conclusion: The log-reduction dose of legionellae in amoebae has not been investigated, but with the observed high UV-C sensitivity for free Legionella, the idea of a future point-of-use disinfection by small UV-C LEDs in water-taps or shower heads appears to be realistic, even if legionellae are more resistant in amoebae.

13.
Technol Health Care ; 24(1): 145-51, 2016.
Article in English | MEDLINE | ID: mdl-26578274

ABSTRACT

BACKGROUND: Conventional procedures for contact lens disinfection, based on solutions with aggressive chemical ingredients, not only affect microorganisms but operate likewise damaging towards the epithelial eye surface. OBJECTIVE: The aim of this study was to evaluate the applicability of an alternative or complementary disinfection procedure for contact lenses based on irradiation within the visible wavelength range. METHODS: Suspensions of S. auricularis, B. subtilis and E. coli were exposed to 405 nm irradiation, for determining the disinfection efficacy. Surviving rates were analyzed by membrane filtration as well as a semi-quantitative analysis using DipSlides. RESULTS: A significant antibacterial effect of the 405 nm irradiation is verifiable for all probed bacteria. Using S. auricularis, there has been no colony forming after an irradiation exposure of 2 hours. CONCLUSION: The hitherto existing results give reason for the assumption that violet LEDs integrated in contact lens cases will provide a subsidiary disinfection activity and maybe even offer the reduction of chemical ingredients in lens cleaning solutions to become gentler to the eye. In addition the danger of a rerise of the germ concentration after the completion of the disinfection procedure will be reduced.


Subject(s)
Bacteria/radiation effects , Contact Lens Solutions , Contact Lenses/microbiology , Disinfection/methods , Ultraviolet Rays , Bacillus subtilis/radiation effects , Escherichia coli/radiation effects , Humans , Staphylococcus/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...