Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 188: 114442, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823830

ABSTRACT

The long-term stability of red wine color depends on the formation of polymeric pigments from anthocyanins. Although there is still a lot of uncertainty about the specific structure of this diverse group of pigments, there is consensus that they are reaction products of anthocyanins and other polyphenols. Interactions between anthocyanins and pectic polysaccharides have been suggested to stabilize anthocyanins. This study explores the impact of such interactions by adding pectin during red winemaking. The results demonstrate that these interactions induce the formation of additional polymeric pigments which enhance the pigment stability during fermentation and aging. While initial pigment formation is higher in wines with added pectin, a notable proportion of the complexes degrades in the later stages of fermentation. Presumably, tannins form insoluble complexes with pectin, reducing tannin concentration by more than 300 mg/L. Anthocyanin concentrations decrease by over 400 mg/L, and polymeric pigments double. Anthocyanins that form polymeric pigments with pectic polysaccharides expand the range of pigments in red wines with possible consequences for the sensory properties of the wine. These findings highlight the complex interactions between pectin, anthocyanins, and tannins, and their influence on pigment formation and wine composition during fermentation and aging.


Subject(s)
Anthocyanins , Fermentation , Pectins , Tannins , Wine , Anthocyanins/chemistry , Anthocyanins/analysis , Pectins/chemistry , Wine/analysis , Tannins/chemistry , Color , Food Handling/methods , Pigments, Biological/chemistry , Polymers/chemistry
2.
J Agric Food Chem ; 70(29): 9117-9131, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35839340

ABSTRACT

Grape cell wall polysaccharides influence the extraction of phenolic compounds during winemaking and consequently polyphenol concentrations in the final wine. During ripening, both compound groups undergo pronounced structural and compositional changes, resulting in a dynamic change of extractability. Grape cell wall polysaccharides from different ripe grapes were added to fermentations of Cabernet Sauvignon and Pinot noir grapes. Polyphenol-polysaccharide interactions affected the concentrations of tannins and monomeric flavanols in the wines depending on the maturity of the added polysaccharides. With higher polysaccharide maturity, the effects became more pronounced. Polysaccharides protected monomeric flavanols and tannin in Pinot noir, thereby increasing the concentrations, but they precipitated or masked these compounds in Cabernet Sauvignon. The added polysaccharides affected the concentrations in anthocyanins and polymeric pigments much less compared to the ripening status of the grapes. It was concluded that structural changes of polysaccharides during ripening affect the extraction of tannins and monomeric flavanols the most.


Subject(s)
Vitis , Wine , Anthocyanins/analysis , Cell Wall/chemistry , Fermentation , Fruit/chemistry , Polyphenols/analysis , Polysaccharides/analysis , Tannins/chemistry , Vitis/chemistry , Wine/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...