Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Control Release ; 243: 243-249, 2016 12 10.
Article in English | MEDLINE | ID: mdl-27773734

ABSTRACT

Cancers are abundantly infiltrated by inflammatory cells that are modulated by tumor cells to secrete mediators fostering tumor cell survival and proliferation. Therefore, agents that interfere with inflammatory signaling molecules or specific immune cell populations have been investigated as anticancer drugs. Corticosteroids are highly potent anti-inflammatory drugs, whose activity is intensified when targeted by nanocarrier systems. Liposome-targeted corticosteroids have been shown to inhibit tumor growth in different syngeneic murine tumor models as well as human xenograft mouse models, which is attributed to a switch in the tumor microenvironment from a pro-inflammatory to an anti-inflammatory state. Despite the recognized value of implantation tumor models in preclinical research, the "acute" inflammation induced by inoculation of tumor cells together with the exponential tumor growth in a relatively short period of time does not resemble slow progressive human disease that develops in situ. Therefore, in this study, the antitumor effect of liposomal corticosteroids was investigated in a clinically more relevant setting of transgenic mice developing spontaneous breast carcinomas. Here we show that liposomal prednisolone phosphate inhibits the growth of spontaneous breast carcinoma. Interestingly, the liposomal prednisolone was significantly more active than free drug. At 72h after injection of the liposomal formulation, 3µg prednisolone per gram of tumor tissue was recovered whereas no drug could be recovered after injection of the free agent. This indicates that, despite etiological and morphological differences between implanted and spontaneous tumor models, EPR-mediated accumulation of drug occurs to similar extent in this spontaneous mammary carcinoma model as in the syngeneic tumor models. Finally, we analyzed miRNA profiles in the MMTV/neu model and showed that the top 10 of miRNAs in the MMTV/neu tumor consisted of miRNAs with a known involvement in breast carcinoma proliferation and metastasis. The only exception was the appearance of miR-146b, a known inflammation-regulating miRNA species, after liposomal prednisolone treatment.


Subject(s)
Antineoplastic Agents, Hormonal/administration & dosage , Glucocorticoids/administration & dosage , Mammary Neoplasms, Experimental/drug therapy , Prednisolone/analogs & derivatives , Animals , Antineoplastic Agents, Hormonal/pharmacology , Female , Glucocorticoids/pharmacology , Humans , Liposomes , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Transgenic , MicroRNAs/metabolism , Prednisolone/administration & dosage , Prednisolone/pharmacology , Time Factors , Xenograft Model Antitumor Assays
2.
Recent Results Cancer Res ; 195: 43-58, 2012.
Article in English | MEDLINE | ID: mdl-22527493

ABSTRACT

The largest difficulty one faces in the development of technology for detection of circulating tumor cells (CTCs) is whether or not tumor cells are present in the blood and at what frequency. Although the introduction of the validated CellSearch system for CTC enumeration has facilitated CTC research the question remains whether CTC are missed or whether the CTC that are reported are indeed clinically relevant. To fulfill the promise of CTC as a real-time liquid biopsy they will need to be present in the blood volume tested and need to be isolated without losing the ability to test the presence of treatment targets. To characterize a sufficiently large number of CTCs in the majority of cancer patients the volume of blood needed is simply too large to process without enrichment prior to detection. Here, we review the detection of CTCs by flow cytometry and fluorescence microscopy with and without immunomagnetic enrichment.


Subject(s)
Flow Cytometry/methods , Immunomagnetic Separation/methods , Neoplastic Cells, Circulating , Humans , Immunomagnetic Separation/instrumentation , Microscopy, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL