Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 59(5): 3207-3214, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32048837

ABSTRACT

The utility of the bulky aryloxide ligands 2,6-Ad2-4-Me-C6H2O- (Ad,Ad,MeArO-) and 2,6-Ad2-4-t-Bu-C6H2O- (Ad,Ad,t-BuArO-; Ad = 1-adamantyl) for stabilizing the Y(II) ion is reported and compared with the results with 2,6-t-Bu2-4-Me-C6H2O- (Ar'O-). In contrast to the reduction product obtained from reducing Y(OAr')3 with potassium graphite, which is only stable in solution for 60 s at room temperature, KC8 reduction of Y(OArAd,Ad,t-Bu)3 in THF in the presence of 2.2.2-cryptand (crypt) produces the room-temperature stable, crystallographically characterizable Y(II) aryloxide [K(crypt)][Y(OArAd,Ad,t-Bu)3]. The X-band EPR spectrum at 77 K shows an axial pattern with resonances centered at g⊥ = 1.97 and g∥ = 2.00 and hyperfine coupling constants of A⊥ = 156.5 G and A∥ = 147.8 G and at room temperature shows an isotropic pattern with giso = 1.98 and Aiso = 153.3 G, which is consistent with an S = 1/2 spin system with nuclear spin I = 1/2 for the 89Y isotope (100% natural abundance).

2.
Angew Chem Int Ed Engl ; 58(6): 1679-1683, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30427562

ABSTRACT

Reaction of the trivalent uranium complex [((Ad,Me ArO)3 N)U(DME)] with one molar equiv [Na(OCAs)(dioxane)3 ], in the presence of 2.2.2-crypt, yields [Na(2.2.2-crypt)][{((Ad,Me ArO)3 N)UIV (THF)}(µ-O){((Ad,Me ArO)3 N)UIV (CAs)}] (1), the first example of a coordinated η1 -cyaarside ligand (CAs- ). Formation of the terminal CAs- is promoted by the highly reducing, oxophilic UIII precursor [((Ad,Me ArO)3 N)U(DME)] and proceeds through reductive C-O bond cleavage of the bound arsaethynolate anion, OCAs- . If two equiv of OCAs- react with the UIII precursor, the binuclear, µ-oxo-bridged U2 IV/IV complex [Na(2.2.2-crypt)]2 [{((Ad,Me ArO)3 N)UIV }2 (µ-O)(µ-AsCAs)] (2), comprising the hitherto unknown µ:η1 ,η1 -coordinated (AsCAs)2- ligand, is isolated. The mechanistic pathway to 2 involves the decarbonylation of a dimeric intermediate formed in the reaction of 1 with OCAs- . An alternative pathway to complex 2 is by conversion of 1 via addition of one further equiv of OCAs- .

3.
Chem Commun (Camb) ; 52(72): 10854-7, 2016 Sep 18.
Article in English | MEDLINE | ID: mdl-27523718

ABSTRACT

The reductive disproportionation of nitric oxide (1 atm) is mediated by the bulky U(III) aryloxide [U(III)(OAr(Ad,Ad,Me))3] ((Ad,Ad,Me)ArO = O-C6H2-2,6-Ad-4-Me) (1) to form the U(V) terminal oxo species [((Ad,Ad,Me)ArO)3U(V)(O)] (2) and N2O, as confirmed by single crystal X-ray diffraction and GC-MS measurements. The reaction is quantitative in the solid state. Mechanistic and theoretical studies of the reaction suggest that the N-N bond is formed by the coupling of an η(1)-O bound nitric oxide ligand with gaseous NO to give an η(1)-(N2O2)(1-) intermediate prior to the spontaneous extrusion of N2O to yield the U(V) terminal oxo species 2.

SELECTION OF CITATIONS
SEARCH DETAIL
...