Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 50(9): 4900-4916, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35536311

ABSTRACT

RNA can be extensively modified post-transcriptionally with >170 covalent modifications, expanding its functional and structural repertoire. Pseudouridine (Ψ), the most abundant modified nucleoside in rRNA and tRNA, has recently been found within mRNA molecules. It remains unclear whether pseudouridylation of mRNA can be snoRNA-guided, bearing important implications for understanding the physiological target spectrum of snoRNAs and for their potential therapeutic exploitation in genetic diseases. Here, using a massively parallel reporter based strategy we simultaneously interrogate Ψ levels across hundreds of synthetic constructs with predesigned complementarity against endogenous snoRNAs. Our results demonstrate that snoRNA-mediated pseudouridylation can occur on mRNA targets. However, this is typically achieved at relatively low efficiencies, and is constrained by mRNA localization, snoRNA expression levels and the length of the snoRNA:mRNA complementarity stretches. We exploited these insights for the design of snoRNAs targeting pseudouridylation at premature termination codons, which was previously shown to suppress translational termination. However, in this and follow-up experiments in human cells we observe no evidence for significant levels of readthrough of pseudouridylated stop codons. Our study enhances our understanding of the scope, 'design rules', constraints and consequences of snoRNA-mediated pseudouridylation.


Subject(s)
Pseudouridine , RNA Processing, Post-Transcriptional , RNA, Messenger , RNA, Small Nucleolar , Humans , Protein Biosynthesis , Pseudouridine/genetics , Pseudouridine/metabolism , RNA, Messenger/metabolism , RNA, Ribosomal/metabolism , RNA, Small Nucleolar/metabolism
2.
Nucleic Acids Res ; 47(21): 11430-11440, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31665419

ABSTRACT

Although group II intron ribozymes are intensively studied the question how structural dynamics affects splicing catalysis has remained elusive. We report for the first time that the group II intron domain 6 exists in a secondary structure equilibrium between a single- and a two-nucleotide bulge conformation, which is directly linked to a switch between sugar puckers of the branch site adenosine. Our study determined a functional sugar pucker equilibrium between the transesterification active C2'-endo conformation of the branch site adenosine in the 1nt bulge and an inactive C3'-endo state in the 2nt bulge fold, allowing the group II intron to switch its activity from the branching to the exon ligation step. Our detailed NMR spectroscopic investigation identified magnesium (II) ions and the branching reaction as regulators of the equilibrium populations. The tuneable secondary structure/sugar pucker equilibrium supports a conformational selection mechanism to up- and downregulate catalytically active and inactive states of the branch site adenosine to orchestrate the multi-step splicing process. The conformational dynamics of group II intron domain 6 is also proposed to be a key aspect for the directionality selection in reversible splicing.


Subject(s)
Introns/genetics , Nucleic Acid Conformation , RNA Splicing/physiology , RNA/chemistry , Sugars/chemistry , Binding Sites , Carbohydrates/chemistry , Magnesium/chemistry , Magnetic Resonance Spectroscopy , RNA/metabolism , Sugars/metabolism
3.
Genes (Basel) ; 10(2)2019 01 25.
Article in English | MEDLINE | ID: mdl-30691071

ABSTRACT

RNA modifications are crucial factors for efficient protein synthesis. All classes of RNAs that are involved in translation are modified to different extents. Recently, mRNA modifications and their impact on gene regulation became a focus of interest because they can exert a variety of effects on the fate of mRNAs. mRNA modifications within coding sequences can either directly or indirectly interfere with protein synthesis. In order to investigate the roles of various natural occurring modified nucleotides, we site-specifically introduced them into the coding sequence of reporter mRNAs and subsequently translated them in HEK293T cells. The analysis of the respective protein products revealed a strong position-dependent impact of RNA modifications on translation efficiency and accuracy. Whereas a single 5-methylcytosine (m5C) or pseudouridine () did not reduce product yields, N¹-methyladenosine (m¹A) generally impeded the translation of the respective modified mRNA. An inhibitory effect of 2'O-methlyated nucleotides (Nm) and N6-methyladenosine (m6A) was strongly dependent on their position within the codon. Finally, we could not attribute any miscoding potential to the set of mRNA modifications tested in HEK293T cells.


Subject(s)
Peptide Chain Elongation, Translational , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , 5-Methylcytosine/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Cell Line, Tumor , HEK293 Cells , Humans , Mice , Pseudouridine/metabolism , RNA, Messenger/metabolism
4.
Nat Commun ; 9(1): 4865, 2018 11 19.
Article in English | MEDLINE | ID: mdl-30451861

ABSTRACT

The precise interplay between the mRNA codon and the tRNA anticodon is crucial for ensuring efficient and accurate translation by the ribosome. The insertion of RNA nucleobase derivatives in the mRNA allowed us to modulate the stability of the codon-anticodon interaction in the decoding site of bacterial and eukaryotic ribosomes, allowing an in-depth analysis of codon recognition. We found the hydrogen bond between the N1 of purines and the N3 of pyrimidines to be sufficient for decoding of the first two codon nucleotides, whereas adequate stacking between the RNA bases is critical at the wobble position. Inosine, found in eukaryotic mRNAs, is an important example of destabilization of the codon-anticodon interaction. Whereas single inosines are efficiently translated, multiple inosines, e.g., in the serotonin receptor 5-HT2C mRNA, inhibit translation. Thus, our results indicate that despite the robustness of the decoding process, its tolerance toward the weakening of codon-anticodon interactions is limited.


Subject(s)
2-Aminopurine/analogs & derivatives , Anticodon/chemistry , Codon/chemistry , Inosine/metabolism , Protein Biosynthesis , Receptor, Serotonin, 5-HT2C/genetics , 2-Aminopurine/chemistry , 2-Aminopurine/metabolism , Anticodon/metabolism , Bacteriophage T7/genetics , Bacteriophage T7/metabolism , Base Sequence , Codon/metabolism , Cytidine/analogs & derivatives , Cytidine/genetics , Cytidine/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , HEK293 Cells , Humans , Hydrogen Bonding , Inosine/genetics , Pyridones/chemistry , Pyridones/metabolism , RNA, Transfer, Gly/genetics , RNA, Transfer, Gly/metabolism , Receptor, Serotonin, 5-HT2C/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
5.
Proc Natl Acad Sci U S A ; 115(3): E382-E389, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29298914

ABSTRACT

Termination of protein synthesis is triggered by the recognition of a stop codon at the ribosomal A site and is mediated by class I release factors (RFs). Whereas in bacteria, RF1 and RF2 promote termination at UAA/UAG and UAA/UGA stop codons, respectively, eukaryotes only depend on one RF (eRF1) to initiate peptide release at all three stop codons. Based on several structural as well as biochemical studies, interactions between mRNA, tRNA, and rRNA have been proposed to be required for stop codon recognition. In this study, the influence of these interactions was investigated by using chemically modified stop codons. Single functional groups within stop codon nucleotides were substituted to weaken or completely eliminate specific interactions between the respective mRNA and RFs. Our findings provide detailed insight into the recognition mode of bacterial and eukaryotic RFs, thereby revealing the chemical groups of nucleotides that define the identity of stop codons and provide the means to discriminate against noncognate stop codons or UGG sense codons.


Subject(s)
Codon, Terminator/genetics , Escherichia coli/metabolism , Peptide Termination Factors/physiology , Escherichia coli Proteins/metabolism , Mutagenesis, Site-Directed , Nucleotides , Peptide Chain Termination, Translational , Protein Biosynthesis
6.
Article in English | MEDLINE | ID: mdl-27345446

ABSTRACT

RNA modifications are indispensable for the translation machinery to provide accurate and efficient protein synthesis. Whereas the importance of transfer RNA (tRNA) and ribosomal RNA (rRNA) modifications has been well described and is unquestioned for decades, the significance of internal messenger RNA (mRNA) modifications has only recently been revealed. Novel experimental methods have enabled the identification of thousands of modified sites within the untranslated and translated regions of mRNAs. Thus far, N6 -methyladenosine (m6 A), pseudouridine (Ψ), 5-methylcytosine (m5 C) and N1 -methyladenosine (m1 A) were identified in eukaryal, and to some extent in prokaryal mRNAs. Several of the functions of these mRNA modifications have previously been reported, but many aspects remain elusive. Modifications can be important factors for the direct regulation of protein synthesis. The potential diversification of genomic information and regulation of RNA expression through editing and modifying mRNAs is versatile and many questions need to be addressed to completely elucidate the role of mRNA modifications. Herein, we summarize and highlight some recent findings on various co- and post-transcriptional modifications, describing the impact of these processes on gene expression, with emphasis on protein synthesis. WIREs RNA 2017, 8:e1375. doi: 10.1002/wrna.1375 For further resources related to this article, please visit the WIREs website.


Subject(s)
RNA Processing, Post-Transcriptional , RNA, Messenger/chemistry , RNA, Messenger/genetics , Transcriptome , 5-Methylcytosine/chemistry , 5-Methylcytosine/metabolism , Animals , Humans , Methylation
7.
RNA Biol ; 13(9): 760-5, 2016 09.
Article in English | MEDLINE | ID: mdl-27351916

ABSTRACT

The expression of a gene is a tightly regulated process and is exerted by a myriad of different mechanisms. Recently, RNA modifications located in coding sequences of mRNAs, have been identified as potential regulators of gene expression. N(6)-methyladenosine (m(6)A), 5-methylcytosine (m(5)C), pseudouridine (Ψ) and N(1)-methyladenosine (m(1)A) have been found within open reading frames of mRNAs. The presence of these mRNA modifications has been implicated to modulate the fate of an mRNA, ranging from maturation to its translation and even degradation. However, many aspects concerning the biological functions of mRNA modifications remain elusive. Recently, systematic in vitro studies allowed a first glimpse of the direct interplay of mRNA modifications and the efficiency and fidelity of ribosomal translation. It thereby became evident that the effects of mRNA modifications were, astonishingly versatile, depending on the type, position or sequence context. The incorporation of a single modification could either prematurely terminate protein synthesis, reduce the peptide yield or alter the amino acid sequence identity. These results implicate that mRNA modifications are a powerful mechanism to post-transcriptionally regulate gene expression.


Subject(s)
Gene Expression Regulation , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , RNA, Messenger/metabolism , Animals , Humans , Protein Biosynthesis , Ribosomes/metabolism
8.
Nucleic Acids Res ; 44(2): 852-62, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26578598

ABSTRACT

Nucleotide modifications within RNA transcripts are found in every organism in all three domains of life. 6-methyladeonsine (m(6)A), 5-methylcytosine (m(5)C) and pseudouridine (Ψ) are highly abundant nucleotide modifications in coding sequences of eukaryal mRNAs, while m(5)C and m(6)A modifications have also been discovered in archaeal and bacterial mRNAs. Employing in vitro translation assays, we systematically investigated the influence of nucleotide modifications on translation. We introduced m(5)C, m(6)A, Ψ or 2'-O-methylated nucleotides at each of the three positions within a codon of the bacterial ErmCL mRNA and analyzed their influence on translation. Depending on the respective nucleotide modification, as well as its position within a codon, protein synthesis remained either unaffected or was prematurely terminated at the modification site, resulting in reduced amounts of the full-length peptide. In the latter case, toeprint analysis of ribosomal complexes was consistent with stalling of translation at the modified codon. When multiple nucleotide modifications were introduced within one codon, an additive inhibitory effect on translation was observed. We also identified the m(5)C modification to alter the amino acid identity of the corresponding codon, when positioned at the second codon position. Our results suggest a novel mode of gene regulation by nucleotide modifications in bacterial mRNAs.


Subject(s)
Adenosine/analogs & derivatives , Pseudouridine/genetics , RNA, Bacterial/genetics , RNA, Messenger/genetics , 5-Methylcytosine/metabolism , Adenosine/genetics , Adenosine/metabolism , Codon , Escherichia coli/genetics , Methyltransferases/genetics , Protein Biosynthesis , Pseudouridine/metabolism , RNA/chemistry , RNA/metabolism , RNA, Bacterial/metabolism , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...