Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(3): e0299107, 2024.
Article in English | MEDLINE | ID: mdl-38517920

ABSTRACT

In vitro models of Mycobacterium tuberculosis (Mtb) infection are a valuable tool for examining host-pathogen interactions and screening drugs. With the development of more complex in vitro models, there is a need for tools to help analyze and integrate data from these models. To this end, we introduce an agent-based model (ABM) representation of the interactions between immune cells and bacteria in an in vitro setting. This in silico model was used to simulate both traditional and spheroid cell culture models by changing the movement rules and initial spatial layout of the cells in accordance with the respective in vitro models. The traditional and spheroid simulations were calibrated to published experimental data in a paired manner, by using the same parameters in both simulations. Within the calibrated simulations, heterogeneous outputs are seen for bacterial count and T cell infiltration into the macrophage core of the spheroid. The simulations also predict that equivalent numbers of activated macrophages do not necessarily result in similar bacterial reductions; that host immune responses can control bacterial growth in both spheroid structure dependent and independent manners; that STAT1 activation is the limiting step in macrophage activation in spheroids; and that drug screening and macrophage activation studies could have different outcomes depending on the in vitro culture used. Future model iterations will be guided by the limitations of the current model, specifically which parts of the output space were harder to reach. This ABM can be used to represent more in vitro Mtb infection models due to its flexible structure, thereby accelerating in vitro discoveries.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis , Humans , Tuberculosis/microbiology , Computer Simulation , Systems Analysis , Host-Pathogen Interactions
2.
Front Immunol ; 13: 1014515, 2022.
Article in English | MEDLINE | ID: mdl-36405707

ABSTRACT

The risk of active tuberculosis disease is 15-21 times higher in those coinfected with human immunodeficiency virus-1 (HIV) compared to tuberculosis alone, and tuberculosis is the leading cause of death in HIV+ individuals. Mechanisms driving synergy between Mycobacterium tuberculosis (Mtb) and HIV during coinfection include: disruption of cytokine balances, impairment of innate and adaptive immune cell functionality, and Mtb-induced increase in HIV viral loads. Tuberculosis granulomas are the interface of host-pathogen interactions. Thus, granuloma-based research elucidating the role and relative impact of coinfection mechanisms within Mtb granulomas could inform cohesive treatments that target both pathogens simultaneously. We review known interactions between Mtb and HIV, and discuss how the structure, function and development of the granuloma microenvironment create a positive feedback loop favoring pathogen expansion and interaction. We also identify key outstanding questions and highlight how coupling computational modeling with in vitro and in vivo efforts could accelerate Mtb-HIV coinfection discoveries.


Subject(s)
Coinfection , HIV Infections , HIV-1 , Tuberculosis , Humans , Systems Biology , Granuloma , HIV Infections/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...