Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ChemMedChem ; 18(10): e202300031, 2023 05 16.
Article in English | MEDLINE | ID: mdl-36825440

ABSTRACT

Kinases are among the most important and successful drug targets. Chemical probe compounds have played a critical role in elucidating the role of kinases in many biological pathways. There are currently twelve well-validated chemical probes that target kinases available free-of-cost via the Molecules to Order (M2O) arm of Boehringer Ingelheim's open innovation platform, opnMe.com. Here we present a summary of the key data for each of these probe compounds and the synthesis routes to all twelve compounds. We hope this will aid researchers who use or plan to use these compounds in their research.

2.
J Med Chem ; 62(17): 7976-7997, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31365252

ABSTRACT

Phosphoglycerate dehydrogenase (PHGDH) is known to be the rate-limiting enzyme in the serine synthesis pathway in humans. It converts glycolysis-derived 3-phosphoglycerate to 3-phosphopyruvate in a co-factor-dependent oxidation reaction. Herein, we report the discovery of BI-4916, a prodrug of the co-factor nicotinamide adenine dinucleotide (NADH/NAD+)-competitive PHGDH inhibitor BI-4924, which has shown high selectivity against the majority of other dehydrogenase targets. Starting with a fragment-based screening, a subsequent hit optimization using structure-based drug design was conducted to deliver a single-digit nanomolar lead series and to improve potency by 6 orders of magnitude. To this end, an intracellular ester cleavage mechanism of the ester prodrug was utilized to achieve intracellular enrichment of the actual carboxylic acid based drug and thus overcome high cytosolic levels of the competitive cofactors NADH/NAD+.


Subject(s)
Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Phosphoglycerate Dehydrogenase/antagonists & inhibitors , Serine/antagonists & inhibitors , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Indoles/chemical synthesis , Indoles/chemistry , Models, Molecular , Molecular Structure , Phosphoglycerate Dehydrogenase/metabolism , Serine/biosynthesis , Structure-Activity Relationship
3.
ChemMedChem ; 14(1): 88-93, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30458062

ABSTRACT

Mouse double minute 2 (MDM2) is a main and direct inhibitor of the crucial tumor suppressor p53. Reports from initial clinical trials showed that blocking this interaction with a small-molecule inhibitor can have great value in the treatment of cancer for patients with p53 wild-type tumors; however, it also revealed dose-limiting hematological toxicities and drug-induced resistance as main issues. To overcome the former, an inhibitor with superior potency and pharmacokinetic properties to ultimately achieve full efficacy with less-frequent dosing schedules is required. Toward this aim, we optimized our recently reported spiro-oxindole inhibitors by focusing on the crucial interaction with the amino acid side chain of His96MDM2 . The designed molecules required the targeted synthesis of structurally complex spiro[indole-3,2'-pyrrolo[2,3-c]pyrrole]-2,4'-diones for which we developed an unprecedented intramolecular azomethine ylide cycloaddition and investigated the results by computational methods. One of the new compounds showed superior cellular potency over previously reported BI-0252. This finding is a significant step toward an inhibitor suitable to potentially mitigate hematological on-target adverse effects.


Subject(s)
Azo Compounds/pharmacology , Indoles/pharmacology , Pyrrolidinones/pharmacology , Spiro Compounds/pharmacology , Thiosemicarbazones/pharmacology , Animals , Azo Compounds/chemistry , Cell Line, Tumor , Crystallography, X-Ray , Cyclization , Density Functional Theory , Dose-Response Relationship, Drug , Humans , Indoles/chemical synthesis , Indoles/chemistry , Mice , Models, Molecular , Molecular Structure , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/chemistry , Proto-Oncogene Proteins c-mdm2/metabolism , Pyrrolidinones/chemical synthesis , Pyrrolidinones/chemistry , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship , Thiosemicarbazones/chemistry , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...