Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Cancer Res ; 76(8): 2186-96, 2016 04 15.
Article in English | MEDLINE | ID: mdl-26837762

ABSTRACT

The proliferation of chronic lymphocytic leukemia (CLL) cells requires communication with the lymphoid organ microenvironment. Integrin-linked kinase (ILK) is a multifunctional intracellular adaptor protein that transmits extracellular signals to regulate malignant cell motility, metastasis, and cell-cycle progression, but is poorly characterized in hematologic malignancies. In this study, we investigated the role of ILK in the context of CLL and observed high ILK expression in patient samples, particularly in tumor cells harboring prognostic high-risk markers such as unmutated IGHV genes, high Zap70, or CD38 expression, or a signature of recent proliferation. We also found increased numbers of Ki67 (MKI67)-positive cells in regions of enhanced ILK expression in lymph nodes from CLL patients. Using coculture conditions mimicking the proliferative lymph node microenvironment, we detected a parallel induction of ILK and cyclin D1 (CCND1) expression in CLL cells that was dependent on the activation of NF-κB signaling by soluble TNFα. The newly synthesized ILK protein colocalized to centrosomal structures and was required for correct centrosome clustering and mitotic spindle organization. Furthermore, we established a mouse model of CLL in which B-cell-specific genetic ablation of ILK resulted in decelerated leukemia development due to reduced organ infiltration and proliferation of CLL cells. Collectively, our findings describe a TNFα-NF-κB-mediated mechanism by which ILK expression is induced in the lymph node microenvironment and propose that ILK promotes leukemogenesis by enabling CLL cells to cope with centrosomal defects acquired during malignant transformation. Cancer Res; 76(8); 2186-96. ©2016 AACR.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Lymphoid Tissue/enzymology , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Cell Proliferation , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/enzymology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Lymphoid Tissue/pathology , Mice , Mice, Transgenic , Prognosis , Protein Serine-Threonine Kinases/genetics , Signal Transduction
3.
Blood ; 123(14): 2181-8, 2014 Apr 03.
Article in English | MEDLINE | ID: mdl-24501217

ABSTRACT

Signals from the tumor microenvironment promote the migration, survival, and proliferation of chronic lymphocytic leukemia (CLL) cells. Rho GTPases control various signaling pathways downstream of microenvironmental cues. Here, we analyze the function of Rac1 in the motility and proliferation of CLL cells. We found decreased transcription of the Rac guanine nucleotide exchange factors Tiam1 and Vav1 in unstimulated peripheral blood CLL cells with almost complete loss of Tiam1 but increased transcription of the potential Rac antagonist RhoH. Consistently, stimulation of CLL cells with the chemokine CXCL12 induced RhoA but not Rac1 activation, whereas chemokine-induced CLL cell motility was Rac1-independent. Coculture of CLL cells with activated T cells induced their activation and subsequent proliferation. Here, Tiam1 expression was induced in the malignant cells in line with increased Ki-67 and c-Myc expression. Rac1 or Tiam1 knockdown using siRNA or treatment with the Tiam1/Rac inhibitor NSC-23766 attenuated c-Myc transcription. Furthermore, treatment of CLL cells with NSC-23766 reduced their proliferation. Rac inhibition also antagonized the chemoresistance of activated CLL cells toward fludarabine. Collectively, our data suggest a dynamic regulation of Rac1 function in the CLL microenvironment. Rac inhibition could be of clinical use by selectively interfering with CLL cell proliferation and chemoresistance.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation , Drug Resistance, Neoplasm/genetics , Guanine Nucleotide Exchange Factors/physiology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , rac1 GTP-Binding Protein/physiology , Aminoquinolines/pharmacology , Animals , Cell Movement/genetics , Cells, Cultured , Gene Expression Regulation, Leukemic/drug effects , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Mice , NIH 3T3 Cells , Pyrimidines/pharmacology , RNA, Small Interfering/genetics , Signal Transduction/physiology , T-Lymphoma Invasion and Metastasis-inducing Protein 1 , rac1 GTP-Binding Protein/antagonists & inhibitors
5.
Expert Opin Biol Ther ; 12(4): 425-41, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22332909

ABSTRACT

INTRODUCTION: Chemokines and their receptors play essential roles in the development, maintenance and proper functioning of the immune system. B cell-T cell interactions are modulated by chemokines. In B cell malignancies, these interactions may have tumor-promoting consequences. AREAS COVERED: This review summarizes physiological B cell-T cell interactions and discusses their pathological role in the onset and progression of B cell malignancies with a special focus on chronic lymphocytic leukemia and multiple myeloma. Experimental data on chemokine-guided B cell-T cell actions in B cell malignancies from murine models as well as in vitro data are summarized and their potential as future therapeutic targets is critically discussed. EXPERT OPINION: Direct or indirect targeting of chemokine receptors involved in localization and T-cell-dependent activation of B lymphocytes can provide strong synergisms with conventional or immunomodulatory therapies by disrupting the microenvironmental conditions necessary for survival and proliferation of malignant B lymphocytes. However, further knowledge of these interactions between B and T cells is needed.


Subject(s)
B-Lymphocytes/metabolism , Chemokines/metabolism , Immunomodulation , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Multiple Myeloma/drug therapy , T-Lymphocytes/metabolism , Animals , B-Lymphocytes/pathology , Cell Communication , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Lymphocyte Activation , Mice , Multiple Myeloma/immunology , Multiple Myeloma/metabolism , Receptors, Chemokine/metabolism , T-Lymphocytes/pathology
6.
PLoS One ; 6(8): e23758, 2011.
Article in English | MEDLINE | ID: mdl-21876768

ABSTRACT

BACKGROUND: VLA-4 and CD38 predict a poor clinical outcome in chronic lymphocytic leukemia (CLL). We used CLL samples with discordant VLA-4/CD38 risk to address their individual roles in human bone marrow infiltration (BM), CLL cell homing to murine BM, and in supportive CLL cell-stromal cell interactions. METHODS: VLA-4, CD38, and Ki-67 expression was measured in CLL cells from peripheral blood (PB) and bone marrow (BM) aspirates. CLL BM infiltration rates, routinely determined by Pathology, were correlated to VLA-4 and CD38 expression. Short-term homing capacity of CLL cells was evaluated by adoptive transfer experiments. CLL cell viability and adhesion in stromal cell co-culture was determined. RESULTS: About 20% of CLL samples in our cohort displayed discordant VLA-4 and CD38 risk, with either high VLA-4 and low CD38 risk or vice versa. Using particularly such samples, we observed that VLA-4, and not CD38, was responsible for recirculation of CLL cells to murine BM. Human BM infiltration was also significantly higher in patients with high VLA-4 risk but not high CD38 risk. However, both molecules acted as independent prognostic markers. While both VLA-4 and CD38 expression were increased in BM-derived CLL cells, and VLA-4+ and CD38+ subpopulations showed enriched Ki-67 expression, VLA-4 did not contribute to CLL cell protection by stromal cells in vitro. CONCLUSIONS: Our data argue for a prominent role of VLA-4 but not CD38 expression in the homing of CLL cells to BM niches and in human BM infiltration, but only a limited role in their protection by stromal cells.


Subject(s)
ADP-ribosyl Cyclase 1/metabolism , Bone Marrow/pathology , Integrin alpha4beta1/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemic Infiltration/pathology , ADP-ribosyl Cyclase 1/blood , Animals , Apoptosis , B-Lymphocytes/immunology , Bone Marrow/metabolism , Cell Adhesion , Cell Count , Female , Humans , Immunohistochemistry , Integrin alpha4beta1/blood , Ki-67 Antigen/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Lymphoid Tissue/pathology , Male , Mice , Risk Factors , Stromal Cells/pathology , Survival Analysis
7.
Cancer Res ; 70(18): 7336-44, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20823161

ABSTRACT

Emerging evidence suggests that the survival of B-cell chronic lymphocytic leukemia (CLL) cells is dependent on microenvironmental influences such as antigenic stimulation and support by stromal cells. Akt, also known as protein kinase B, is a central component in prosurvival signaling downstream of these events. We investigated the role of Akt and its modulation by the protooncogene T-cell leukemia 1a (Tcl1a) in the survival pathways of primary CLL samples and CLL-derived prolymphocytic cell lines MEC-1 and MEC-2. Akt activation was increased by the protective presence of human bone marrow stromal cells and B-cell receptor mimicking signals but antagonized by direct Akt blockade with the novel specific inhibitor AiX, with preferential apoptosis induction in CLL cells with an unmutated immunoglobulin status, which predicts poor clinical outcome. In addition, we found a direct interaction of Akt with Tcl1a in an endogenous coimmunoprecipitation assay. Confirming the critical role of Tcl1a in modulating Akt signaling, Akt activation was enhanced by overexpressing Tcl1a in CLL. In contrast, decreasing Tcl1a levels by small interfering RNA reduced Akt activation in the fludarabine-insensitive CLL cell line MEC-2 and sensitized the malignant cells to fludarabine treatment. In summary, our data reveal a significant role for the Akt-Tcl1a axis in CLL survival and propose a further evaluation of this interplay for targeting chemoresistance phenomena.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/enzymology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Enzyme Inhibitors/pharmacology , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Oxazines/pharmacology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , RNA, Small Interfering/genetics , Signal Transduction , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL