Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res Cogn Brain Res ; 22(3): 323-31, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15722204

ABSTRACT

Napping benefits and sustains subsequent performance. Prophylactic naps have been recommended as a means to maintain performance during extended wakefulness, as required during shiftwork. However, napping may cause short-term performance impairments, because awakening from sleep is followed by sleep inertia, a period of hypovigilance and impaired cognitive and behavioral performance. We investigated sleep inertia after an afternoon nap. Healthy 18-28 year-olds (n=50, not sleep deprived) were assigned to sleep, active wake or rest groups for a 2-h experimental phase with polysomnography starting either at 14:00 or 16:00 for half of each group. Before (baseline, 12:30 or 14:30) and in five sessions during the hour after the experimental phase (16:00-17:00 or 18:00-19:00), subjects completed an addition task, an auditory reaction time task, and the Stanford Sleepiness Scale. In session one, addition speed in the sleep group was reduced compared with baseline and with active wake controls, whereas calculation accuracy did not change. Addition speed in the sleep and rest groups increased substantially from session one to session two and reached a level similar to that of the active wake group by the fifth session. In the first session, auditory reaction speed of the sleep group was reduced compared with baseline and with rest controls but did not differ from the active wake group. The slowest reaction times showed significant recovery after 20 min. The groups reported similar increases in subjective sleepiness after the experimental period. These findings provide evidence for performance slowing and recovery during the hour following a 2-h nap opportunity. They highlight the importance of employing multiple control groups and various objective and subjective measures to assess sleep inertia.


Subject(s)
Psychomotor Performance/physiology , Reaction Time/physiology , Rest/physiology , Sleep/physiology , Wakefulness/physiology , Acoustic Stimulation/methods , Adolescent , Adult , Analysis of Variance , Humans
2.
Learn Mem ; 11(2): 162-71, 2004.
Article in English | MEDLINE | ID: mdl-15054131

ABSTRACT

We investigated learning-related changes in amplitude, scalp topography, and source localization of the mismatch negativity (MMN), a neurophysiological response correlated with auditory discrimination ability. Participants (n = 32) underwent two EEG recordings while they watched silent films and ignored auditory stimuli. Stimuli were a standard (probability = 85%) and two deviant (probability = 7.5% each for high [HD] and low [LD]) eight-tone sequences that differed in the frequency of one tone. Between recordings, subjects practiced discriminating the HD or LD from the standard for 6 min. The amplitude of the LD MMN increased significantly across recordings in both groups, whereas the amplitude of the HD MMN did not. The LD was easier to discriminate than was the HD. Thus, practicing either discrimination increased the MMN for the easier discrimination. Learning and changes in the LD MMN amplitude were highly correlated. Source localizations of event-related potentials (ERPs) to all stimuli revealed bilateral sources in superior temporal regions. Compared with the standard ERP, the LD ERP revealed a stronger source in the left superior temporal region in both recordings, whereas the right-sided source became stronger after learning. Consistent with prior studies of auditory plasticity in animals and humans, tone sequence learning induced rapid neurophysiological plasticity in the human central auditory system. The results also suggest that there is asymmetric hemispheric involvement in tone sequence discrimination learning and that discrimination difficulty influences the time course of learning-related neurophysiological changes.


Subject(s)
Attention/physiology , Discrimination Learning/physiology , Evoked Potentials, Auditory/physiology , Field Dependence-Independence , Neuronal Plasticity/physiology , Pattern Recognition, Physiological/physiology , Acoustic Stimulation , Adult , Female , Humans , Magnetoencephalography , Male , Time Factors , Tomography
SELECTION OF CITATIONS
SEARCH DETAIL
...