Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Respir Res ; 25(1): 106, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419014

ABSTRACT

BACKGROUND: Small airways disease (SAD) is a major cause of airflow obstruction in COPD patients and has been identified as a precursor to emphysema. Although the amount of SAD in the lungs can be quantified using our Parametric Response Mapping (PRM) approach, the full breadth of this readout as a measure of emphysema and COPD progression has yet to be explored. We evaluated topological features of PRM-derived normal parenchyma and SAD as surrogates of emphysema and predictors of spirometric decline. METHODS: PRM metrics of normal lung (PRMNorm) and functional SAD (PRMfSAD) were generated from CT scans collected as part of the COPDGene study (n = 8956). Volume density (V) and Euler-Poincaré Characteristic (χ) image maps, measures of the extent and coalescence of pocket formations (i.e., topologies), respectively, were determined for both PRMNorm and PRMfSAD. Association with COPD severity, emphysema, and spirometric measures were assessed via multivariable regression models. Readouts were evaluated as inputs for predicting FEV1 decline using a machine learning model. RESULTS: Multivariable cross-sectional analysis of COPD subjects showed that V and χ measures for PRMfSAD and PRMNorm were independently associated with the amount of emphysema. Readouts χfSAD (ß of 0.106, p < 0.001) and VfSAD (ß of 0.065, p = 0.004) were also independently associated with FEV1% predicted. The machine learning model using PRM topologies as inputs predicted FEV1 decline over five years with an AUC of 0.69. CONCLUSIONS: We demonstrated that V and χ of fSAD and Norm have independent value when associated with lung function and emphysema. In addition, we demonstrated that these readouts are predictive of spirometric decline when used as inputs in a ML model. Our topological PRM approach using PRMfSAD and PRMNorm may show promise as an early indicator of emphysema onset and COPD progression.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Cross-Sectional Studies , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Lung/diagnostic imaging , Forced Expiratory Volume/physiology
2.
Acad Radiol ; 31(3): 1148-1159, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37661554

ABSTRACT

RATIONALE AND OBJECTIVES: Small airways disease (SAD) and emphysema are significant components of chronic obstructive pulmonary disease (COPD), a heterogenous disease where predicting progression is difficult. SAD, a principal cause of airflow obstruction in mild COPD, has been identified as a precursor to emphysema. Parametric Response Mapping (PRM) of chest computed tomography (CT) can help distinguish SAD from emphysema. Specifically, topologic PRM can define local patterns of both diseases to characterize how and in whom COPD progresses. We aimed to determine if distribution of CT-based PRM of functional SAD (fSAD) is associated with emphysema progression. MATERIALS AND METHODS: We analyzed paired inspiratory-expiratory chest CT scans at baseline and 5-year follow up in 1495 COPDGene subjects using topological analyses of PRM classifications. By spatially aligning temporal scans, we mapped local emphysema at year five to baseline lobar PRM-derived topological readouts. K-means clustering was applied to all observations. Subjects were subtyped based on predominant PRM cluster assignments and assessed using non-parametric statistical tests to determine differences in PRM values, pulmonary function metrics, and clinical measures. RESULTS: We identified distinct lobar imaging patterns and classified subjects into three radiologic subtypes: emphysema-dominant (ED), fSAD-dominant (FD), and fSAD-transition (FT: transition from healthy lung to fSAD). Relative to year five emphysema, FT showed rapid local emphysema progression (-57.5% ± 1.1) compared to FD (-49.9% ± 0.5) and ED (-33.1% ± 0.4). FT consisted primarily of at-risk subjects (roughly 60%) with normal spirometry. CONCLUSION: The FT subtype of COPD may allow earlier identification of individuals without spirometrically-defined COPD at-risk for developing emphysema.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Pulmonary Emphysema/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Lung/diagnostic imaging , Tomography, X-Ray Computed/methods
3.
medRxiv ; 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37333382

ABSTRACT

Objectives: Small airways disease (SAD) is a major cause of airflow obstruction in COPD patients, and has been identified as a precursor to emphysema. Although the amount of SAD in the lungs can be quantified using our Parametric Response Mapping (PRM) approach, the full breadth of this readout as a measure of emphysema and COPD progression has yet to be explored. We evaluated topological features of PRM-derived normal parenchyma and SAD as surrogates of emphysema and predictors of spirometric decline. Materials and Methods: PRM metrics of normal lung (PRMNorm) and functional SAD (PRMfSAD) were generated from CT scans collected as part of the COPDGene study (n=8956). Volume density (V) and Euler-Poincaré Characteristic (χ) image maps, measures of the extent and coalescence of pocket formations (i.e., topologies), respectively, were determined for both PRMNorm and PRMfSAD. Association with COPD severity, emphysema, and spirometric measures were assessed via multivariable regression models. Readouts were evaluated as inputs for predicting FEV1 decline using a machine learning model. Results: Multivariable cross-sectional analysis of COPD subjects showed that V and χ measures for PRMfSAD and PRMNorm were independently associated with the amount of emphysema. Readouts χfSAD (ß of 0.106, p<0.001) and VfSAD (ß of 0.065, p=0.004) were also independently associated with FEV1% predicted. The machine learning model using PRM topologies as inputs predicted FEV1 decline over five years with an AUC of 0.69. Conclusions: We demonstrated that V and χ of fSAD and Norm have independent value when associated with lung function and emphysema. In addition, we demonstrated that these readouts are predictive of spirometric decline when used as inputs in a ML model. Our topological PRM approach using PRMfSAD and PRMNorm may show promise as an early indicator of emphysema onset and COPD progression.

4.
Cells ; 11(4)2022 02 16.
Article in English | MEDLINE | ID: mdl-35203345

ABSTRACT

Chronic rejection of lung allografts has two major subtypes, bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS), which present radiologically either as air trapping with small airways disease or with persistent pleuroparenchymal opacities. Parametric response mapping (PRM), a computed tomography (CT) methodology, has been demonstrated as an objective readout of BOS and RAS and bears prognostic importance, but has yet to be correlated to biological measures. Using a topological technique, we evaluate the distribution and arrangement of PRM-derived classifications of pulmonary abnormalities from lung transplant recipients undergoing redo-transplantation for end-stage BOS (N = 6) or RAS (N = 6). Topological metrics were determined from each PRM classification and compared to structural and biological markers determined from microCT and histopathology of lung core samples. Whole-lung measurements of PRM-defined functional small airways disease (fSAD), which serves as a readout of BOS, were significantly elevated in BOS versus RAS patients (p = 0.01). At the core-level, PRM-defined parenchymal disease, a potential readout of RAS, was found to correlate to neutrophil and collagen I levels (p < 0.05). We demonstrate the relationship of structural and biological markers to the CT-based distribution and arrangement of PRM-derived readouts of BOS and RAS.


Subject(s)
Bronchiolitis Obliterans , Graft vs Host Disease , Lung Transplantation , Allografts , Biomarkers , Bronchiolitis Obliterans/diagnostic imaging , Humans , Inflammation , Lung/diagnostic imaging , Lung Transplantation/adverse effects , Syndrome , Tomography, X-Ray Computed/methods
5.
PLoS One ; 16(3): e0248902, 2021.
Article in English | MEDLINE | ID: mdl-33760861

ABSTRACT

BACKGROUND: Radiologic evidence of air trapping (AT) on expiratory computed tomography (CT) scans is associated with early pulmonary dysfunction in patients with cystic fibrosis (CF). However, standard techniques for quantitative assessment of AT are highly variable, resulting in limited efficacy for monitoring disease progression. OBJECTIVE: To investigate the effectiveness of a convolutional neural network (CNN) model for quantifying and monitoring AT, and to compare it with other quantitative AT measures obtained from threshold-based techniques. MATERIALS AND METHODS: Paired volumetric whole lung inspiratory and expiratory CT scans were obtained at four time points (0, 3, 12 and 24 months) on 36 subjects with mild CF lung disease. A densely connected CNN (DN) was trained using AT segmentation maps generated from a personalized threshold-based method (PTM). Quantitative AT (QAT) values, presented as the relative volume of AT over the lungs, from the DN approach were compared to QAT values from the PTM method. Radiographic assessment, spirometric measures, and clinical scores were correlated to the DN QAT values using a linear mixed effects model. RESULTS: QAT values from the DN were found to increase from 8.65% ± 1.38% to 21.38% ± 1.82%, respectively, over a two-year period. Comparison of CNN model results to intensity-based measures demonstrated a systematic drop in the Dice coefficient over time (decreased from 0.86 ± 0.03 to 0.45 ± 0.04). The trends observed in DN QAT values were consistent with clinical scores for AT, bronchiectasis, and mucus plugging. In addition, the DN approach was found to be less susceptible to variations in expiratory deflation levels than the threshold-based approach. CONCLUSION: The CNN model effectively delineated AT on expiratory CT scans, which provides an automated and objective approach for assessing and monitoring AT in CF patients.


Subject(s)
Air , Deep Learning , Exhalation/physiology , Tomography, X-Ray Computed , Child , Female , Humans , Male , Neural Networks, Computer , Regression Analysis , Respiratory Function Tests
6.
Acad Radiol ; 28(12): 1711-1720, 2021 12.
Article in English | MEDLINE | ID: mdl-32928633

ABSTRACT

RATIONALE AND OBJECTIVES: Glioblastoma image evaluation utilizes Magnetic Resonance Imaging contrast-enhanced, T1-weighted, and noncontrast T2-weighted fluid-attenuated inversion recovery (FLAIR) acquisitions. Disease progression assessment relies on changes in tumor diameter, which correlate poorly with survival. To improve treatment monitoring in glioblastoma, we investigated serial voxel-wise comparison of anatomically-aligned FLAIR signal as an early predictor of GBM progression. MATERIALS AND METHODS: We analyzed longitudinal normalized FLAIR images (rFLAIR) from 52 subjects using voxel-wise Parametric Response Mapping (PRM) to monitor volume fractions of increased (PRMrFLAIR+), decreased (PRMrFLAIR-), or unchanged (PRMrFLAIR0) rFLAIR intensity. We determined response by rFLAIR between pretreatment and 10 weeks posttreatment. Risk of disease progression in a subset of subjects (N = 26) with stable disease or partial response as defined by Response Assessment in Neuro-Oncology (RANO) criteria was assessed by PRMrFLAIR between weeks 10 and 20 and continuously until the PRMrFLAIR+ exceeded a defined threshold. RANO defined criteria were compared with PRM-derived outcomes for tumor progression detection. RESULTS: Patient stratification for progression-free survival (PFS) and overall survival (OS) was achieved at week 10 using RANO criteria (PFS: p <0.0001; OS: p <0.0001), relative change in FLAIR-hyperintense volume (PFS: p = 0.0011; OS: p <0.0001), and PRMrFLAIR+ (PFS: p <0.01; OS: p <0.001). PRMrFLAIR+ also stratified responding patients' progression between weeks 10 and 20 (PFS: p <0.05; OS: p = 0.01) while changes in FLAIR-volume measurements were not predictive. As a continuous evaluation, PRMrFLAIR+ exceeding 10% stratified patients for PFA after 5.6 months (p<0.0001), while RANO criteria did not stratify patients until 15.4 months (p <0.0001). CONCLUSION: PRMrFLAIR may provide an early biomarker of disease progression in glioblastoma.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/diagnostic imaging , Contrast Media , Disease Progression , Glioblastoma/diagnostic imaging , Humans , Magnetic Resonance Imaging , Neoplasm Recurrence, Local , Retrospective Studies
7.
Acad Radiol ; 26(9): 1202-1214, 2019 09.
Article in English | MEDLINE | ID: mdl-30545681

ABSTRACT

RATIONALE AND OBJECTIVES: The aim of this study was to assess variability in quantitative air trapping (QAT) measurements derived from spatially aligned expiration CT scans. MATERIALS AND METHODS: Sixty-four paired CT examinations, from 16 school-age cystic fibrosis subjects examined at four separate time intervals, were used in this study. For each pair, visually inspected lobe segmentation maps were generated and expiration CT data were registered to the inspiration CT frame. Measurements of QAT, the percentage of voxels on the expiration CT scan below a set threshold were calculated for each lobe and whole-lung from the registered expiration CT and compared to the true values from the unregistered data. RESULTS: A mathematical model, which simulates the effect of variable regions of lung deformation on QAT values calculated from aligned to those from unaligned data, showed the potential for large bias. Assessment of experimental QAT measurements using Bland-Altman plots corroborated the model simulations, demonstrating biases greater than 5% when QAT was approximately 40% of lung volume. These biases were removed when calculating QAT from aligned expiration CT data using the determinant of the Jacobian matrix. We found, by Dice coefficient analysis, good agreement between aligned expiration and inspiration segmentation maps for the whole-lung and all but one lobe (Dice coefficient > 0.9), with only the lingula generating a value below 0.9 (mean and standard deviation of 0.85 ± 0.06). CONCLUSION: The subtle and predictable variability in corrected QAT observed in this study suggests that image registration is reliable in preserving the accuracy of the quantitative metrics.


Subject(s)
Cystic Fibrosis/diagnostic imaging , Exhalation , Inhalation , Tomography, X-Ray Computed , Adolescent , Algorithms , Child , Female , Humans , Male , Radiographic Image Interpretation, Computer-Assisted , Tidal Volume
9.
Am J Nucl Med Mol Imaging ; 8(3): 189-199, 2018.
Article in English | MEDLINE | ID: mdl-30042870

ABSTRACT

Metastatic prostate cancer to bone remains incurable, driving efforts to develop individualized, targeted therapies to improve clinical outcomes while limiting adverse side-effects. Due to the complexity in cellular signaling pathways and the interaction between cancer and its microenvironment, multiparametric imaging approaches for treatment response may improve understanding of the biological effects of therapy. An orthotopic model of castration resistant prostate cancer (CRPC) bone metastasis was treated with the tyrosine kinase inhibitor Cabozantinib (CABO). Response was assessed using CT to monitor bone volumes, 99mTc-MDP SPECT for bone metabolism, and anatomical and diffusion MRI for tumor volume and cell death. A concurrent clinical trial of CABO for CRPC patients also evaluated multimodality imaging in correlation with standard response criteria. Response in the preclinical study found significant slowing in tumor growth rate (P<0.01), rise in tumor apparent diffusion coefficient (ADC, P<0.001), and drop in 99mTc-MDP adsorption (P<0.05). Loss of bone volume did not slow with treatment, attributed to the highly aggressive and osteolytic nature of the PC3 cell line. Clinical trial analysis found only a single subject who progressed after 12 weeks of therapy. Imaging at 6 weeks corroborated the 12-week radiological assessment with positive response visible as increased ADC and decreased vascular metrics. Conversely, the subject who progressed at 12 weeks had no change in ADC, and substantial drops in vascular metrics. These results showcase a multifaceted translational imaging approach for detecting targeted treatment response with effective blockade of tumor vascularization, tumor cell kill, and reduced proliferation.

11.
Tomography ; 3(3): 163-173, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29124128

ABSTRACT

Thoracic aortic aneurysm is a common and lethal disease that requires regular imaging surveillance to determine timing of surgical repair and prevent major complications such as rupture. Current cross-sectional imaging surveillance techniques, largely based on computed tomography angiography, are focused on measurement of maximal aortic diameter, although this approach is limited to fixed anatomic positions and is prone to significant measurement error. Here we present preliminary results showing the feasibility of a novel technique for assessing change in aortic dimensions, termed vascular deformation mapping (VDM). This technique allows quantification of 3-dimensional changes in the aortic wall geometry through nonrigid coregistration of computed tomography angiography images and spatial Jacobian analysis of aortic deformation. Through several illustrative cases we demonstrate that this method can be used to measure changes in the aortic wall geometry among patients with stable and enlarging thoracic aortic aneurysm and dissection. Furthermore, VDM results yield observations about the presence, distribution, and rate of aortic wall deformation that are not apparent by routine clinical evaluation. Finally, we show the feasibility of superposing patient-specific VDM results on a 3-dimensional aortic model using color 3D printing and discuss future directions and potential applications for the VDM technique.

12.
Sci Rep ; 7(1): 2999, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28592874

ABSTRACT

Parametric response mapping (PRM) of paired CT lung images has been shown to improve the phenotyping of COPD by allowing for the visualization and quantification of non-emphysematous air trapping component, referred to as functional small airways disease (fSAD). Although promising, large variability in the standard method for analyzing PRMfSAD has been observed. We postulate that representing the 3D PRMfSAD data as a single scalar quantity (relative volume of PRMfSAD) oversimplifies the original 3D data, limiting its potential to detect the subtle progression of COPD as well as varying subtypes. In this study, we propose a new approach to analyze PRM. Based on topological techniques, we generate 3D maps of local topological features from 3D PRMfSAD classification maps. We found that the surface area of fSAD (SfSAD) was the most robust and significant independent indicator of clinically meaningful measures of COPD. We also confirmed by micro-CT of human lung specimens that structural differences are associated with unique SfSAD patterns, and demonstrated longitudinal feature alterations occurred with worsening pulmonary function independent of an increase in disease extent. These findings suggest that our technique captures additional COPD characteristics, which may provide important opportunities for improved diagnosis of COPD patients.


Subject(s)
Biometry/methods , Imaging, Three-Dimensional/methods , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/pathology , Tomography, X-Ray Computed/methods , Female , Humans , Longitudinal Studies , Male
13.
Tomography ; 2(1): 67-78, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27213182

ABSTRACT

Myelofibrosis (MF) is a hematologic neoplasm arising as a primary disease or secondary to other myeloproliferative neoplasms (MPNs). Both primary and secondary MF are uniquely associated with progressive bone marrow fibrosis, displacing normal hematopoietic cells from the marrow space and disrupting normal production of mature blood cells. Activation of the JAK2 signaling pathway in hematopoietic stem cells commonly causes MF, and ruxolitinib, a drug targeting this pathway, is the treatment of choice for many patients. However, current measures of disease status in MF do not necessarily predict response to treatment with ruxolitinib or other drugs in MF. Bone marrow biopsies are invasive and prone to sampling error, while measurements of spleen volume only indirectly reflect bone marrow status. Toward the goal of developing an imaging biomarker for treatment response in MF, we present preliminary results from a prospective clinical study evaluating parametric response mapping (PRM) of quantitative Dixon MRI bone marrow fat fraction maps in four MF patients treated with ruxolitinib. PRM allows for the voxel-wise identification of significant change in quantitative imaging readouts over time, in this case the bone marrow fat content. We identified heterogeneous response patterns of bone marrow fat among patients and within different bone marrow sites in the same patient. We also observed discordance between changes in bone marrow fat fraction and reductions in spleen volume, the standard imaging metric for treatment efficacy. This study provides initial support for PRM analysis of quantitative MRI of bone marrow fat to monitor response to therapy in MF, setting the stage for larger studies to further develop and validate this method as a complementary imaging biomarker for this disease.

14.
Tomography ; 2(4): 267-275, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28286871

ABSTRACT

Management of glioblastoma multiforme remains a challenging problem despite recent advances in targeted therapies. Timely assessment of therapeutic agents is hindered by the lack of standard quantitative imaging protocols for determining targeted response. Clinical response assessment for brain tumors is determined by volumetric changes assessed at 10 weeks post-treatment initiation. Further, current clinical criteria fail to use advanced quantitative imaging approaches, such as diffusion and perfusion magnetic resonance imaging. Development of the parametric response mapping (PRM) applied to diffusion-weighted magnetic resonance imaging has provided a sensitive and early biomarker of successful cytotoxic therapy in brain tumors while maintaining a spatial context within the tumor. Although PRM provides an earlier readout than volumetry and sometimes greater sensitivity compared with traditional whole-tumor diffusion statistics, it is not routinely used for patient management; an automated and standardized software for performing the analysis and for the generation of a clinical report document is required for this. We present a semiautomated and seamless workflow for image coregistration, segmentation, and PRM classification of glioblastoma multiforme diffusion-weighted magnetic resonance imaging scans. The software solution can be integrated using local hardware or performed remotely in the cloud while providing connectivity to existing picture archive and communication systems. This is an important step toward implementing PRM analysis of solid tumors in routine clinical practice.

15.
Tomography ; 1(1): 44-52, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26568982

ABSTRACT

Quantitative magnetic resonance imaging (MRI)-based biomarkers, which capture physiological and functional tumor processes, were evaluated as imaging surrogates of early tumor response following chemoradiotherapy in glioma patients. A multiparametric extension of a voxel-based analysis, referred as the parametric response map (PRM), was applied to quantitative MRI maps to test the predictive potential of this metric for detecting response. Fifty-six subjects with newly diagnosed high-grade gliomas treated with radiation and concurrent temozolomide were enrolled in a single-site prospective institutional review board-approved MRI study. Apparent diffusion coefficient (ADC) and relative cerebral blood volume (rCBV) maps were acquired before therapy and 3 weeks after therapy was initiated. Multiparametric PRM (mPRM) was applied to both physiological MRI maps and evaluated as an imaging biomarker of patient survival. For comparison, single-biomarker PRMs were also evaluated in this study. The simultaneous analysis of ADC and rCBV by the mPRM approach was found to improve the predictive potential for patient survival over single PRM measures. With an array of quantitative imaging parameters being evaluated as biomarkers of therapeutic response, mPRM shows promise as a new methodology for consolidating physiologically distinct imaging parameters into a single interpretable and quantitative metric.

16.
Tomography ; 1(1): 69-77, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26568983

ABSTRACT

Parametric response mapping (PRM) of inspiration and expiration computed tomography (CT) images improves the radiological phenotyping of chronic obstructive pulmonary disease (COPD). PRM classifies individual voxels of lung parenchyma as normal, emphysematous, or nonemphysematous air trapping. In this study, bias and noise characteristics of the PRM methodology to CT and clinical procedures were evaluated to determine best practices for this quantitative technique. Twenty patients of varying COPD status with paired volumetric inspiration and expiration CT scans of the lungs were identified from the baseline COPD-Gene cohort. The impact of CT scanner manufacturer and reconstruction kernels were evaluated as potential sources of variability in PRM measurements along with simulations to quantify the impact of inspiration/expiration lung volume levels, misregistration, and image spacing on PRM measurements. Negligible variation in PRM metrics was observed when CT scanner type and reconstruction were consistent and inspiration/expiration lung volume levels were near target volumes. CT scanner Hounsfield unit drift occurred but remained difficult to ameliorate. Increasing levels of image misregistration and CT slice spacing were found to have a minor effect on PRM measurements. PRM-derived values were found to be most sensitive to lung volume levels and mismatched reconstruction kernels. As with other quantitative imaging techniques, reliable PRM measurements are attainable when consistent clinical and CT protocols are implemented.

17.
J Magn Reson Imaging ; 42(6): 1759-64, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26012876

ABSTRACT

PURPOSE: To evaluate between-site agreement of apparent diffusion coefficient (ADC) measurements in preclinical magnetic resonance imaging (MRI) systems. MATERIALS AND METHODS: A miniaturized thermally stable ice-water phantom was devised. ADC (mean and interquartile range) was measured over several days, on 4.7T, 7T, and 9.4T Bruker, Agilent, and Magnex small-animal MRI systems using a common protocol across seven sites. Day-to-day repeatability was expressed as percent variation of mean ADC between acquisitions. Cross-site reproducibility was expressed as 1.96 × standard deviation of percent deviation of ADC values. RESULTS: ADC measurements were equivalent across all seven sites with a cross-site ADC reproducibility of 6.3%. Mean day-to-day repeatability of ADC measurements was 2.3%, and no site was identified as presenting different measurements than others (analysis of variance [ANOVA] P = 0.02, post-hoc test n.s.). Between-slice ADC variability was negligible and similar between sites (P = 0.15). Mean within-region-of-interest ADC variability was 5.5%, with one site presenting a significantly greater variation than the others (P = 0.0013). CONCLUSION: Absolute ADC values in preclinical studies are comparable between sites and equipment, provided standardized protocols are employed.


Subject(s)
Diffusion Magnetic Resonance Imaging/instrumentation , Diffusion Magnetic Resonance Imaging/veterinary , Image Enhancement/instrumentation , Image Interpretation, Computer-Assisted/instrumentation , Equipment Design , Equipment Failure Analysis , Europe , Phantoms, Imaging/veterinary , Phantoms, Imaging/virology , United States
18.
PLoS One ; 10(4): e0123877, 2015.
Article in English | MEDLINE | ID: mdl-25859981

ABSTRACT

Bone metastasis occurs for men with advanced prostate cancer which promotes osseous growth and destruction driven by alterations in osteoblast and osteoclast homeostasis. Patients can experience pain, spontaneous fractures and morbidity eroding overall quality of life. The complex and dynamic cellular interactions within the bone microenvironment limit current treatment options thus prostate to bone metastases remains incurable. This study uses voxel-based analysis of diffusion-weighted MRI and CT scans to simultaneously evaluate temporal changes in normal bone homeostasis along with prostate bone metatastsis to deliver an improved understanding of the spatiotemporal local microenvironment. Dynamic tumor-stromal interactions were assessed during treatment in mouse models along with a pilot prospective clinical trial with metastatic hormone sensitive and castration resistant prostate cancer patients with bone metastases. Longitudinal changes in tumor and bone imaging metrics during delivery of therapy were quantified. Studies revealed that voxel-based parametric response maps (PRM) of DW-MRI and CT scans could be used to quantify and spatially visualize dynamic changes during prostate tumor growth and in response to treatment thereby distinguishing patients with stable disease from those with progressive disease (p<0.05). These studies suggest that PRM imaging biomarkers are useful for detection of the impact of prostate tumor-stromal responses to therapies thus demonstrating the potential of multi-modal PRM image-based biomarkers as a novel means for assessing dynamic alterations associated with metastatic prostate cancer. These results establish an integrated and clinically translatable approach which can be readily implemented for improving the clinical management of patients with metastatic bone disease.


Subject(s)
Bone Neoplasms/diagnosis , Bone Neoplasms/secondary , Multimodal Imaging/methods , Prostatic Neoplasms/pathology , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Bone Density , Bone Neoplasms/therapy , Diffusion Magnetic Resonance Imaging , Diphosphonates/pharmacology , Diphosphonates/therapeutic use , Disease Models, Animal , Docetaxel , Humans , Male , Mice , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteolysis/diagnosis , Taxoids/pharmacology , Taxoids/therapeutic use , Treatment Outcome , Tumor Burden/drug effects , Tumor Burden/radiation effects
19.
Sci Signal ; 8(361): ra9, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25628462

ABSTRACT

Genomic amplification of the gene encoding and phosphorylation of the protein FADD (Fas-associated death domain) is associated with poor clinical outcome in lung cancer and in head and neck cancer. Activating mutations in the guanosine triphosphatase RAS promotes cell proliferation in various cancers. Increased abundance of phosphorylated FADD in patient-derived tumor samples predicts poor clinical outcome. Using immunohistochemistry analysis and in vivo imaging of conditional mouse models of KRAS(G12D)-driven lung cancer, we found that the deletion of the gene encoding FADD suppressed tumor growth, reduced the proliferative index of cells, and decreased the activation of downstream effectors of the RAS-MAPK (mitogen-activated protein kinase) pathway that promote the cell cycle, including retinoblastoma (RB) and cyclin D1. In mouse embryonic fibroblasts, the induction of mitosis upon activation of KRAS required FADD and the phosphorylation of FADD by CK1α (casein kinase 1α). Deleting the gene encoding CK1α in KRAS mutant mice abrogated the phosphorylation of FADD and suppressed lung cancer development. Phosphorylated FADD was most abundant during the G2/M phase of the cell cycle, and mass spectrometry revealed that phosphorylated FADD interacted with kinases that mediate the G2/M transition, including PLK1 (Polo-like kinase 1), AURKA (Aurora kinase A), and BUB1 (budding uninhibited by benzimidazoles 1). This interaction was decreased in cells treated with a CKI-7, a CK1α inhibitor. Therefore, as the kinase that phosphorylates FADD downstream of RAS, CK1α may be a therapeutic target for KRAS-driven lung cancer.


Subject(s)
Casein Kinase Ialpha/metabolism , Fas-Associated Death Domain Protein/metabolism , Lung Neoplasms/genetics , Mutation, Missense/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Aurora Kinase A/metabolism , Blotting, Western , Cell Cycle Proteins/metabolism , DNA Primers/genetics , Genotype , Histological Techniques , Immunoprecipitation , Luminescent Measurements , Mass Spectrometry , Mice , Phosphorylation , Polymerase Chain Reaction , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , X-Ray Microtomography , Polo-Like Kinase 1
20.
Acad Radiol ; 22(2): 186-94, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25442794

ABSTRACT

RATIONALE AND OBJECTIVES: The longitudinal relationship between regional air trapping and emphysema remains unexplored. We have sought to demonstrate the utility of parametric response mapping (PRM), a computed tomography (CT)-based biomarker, for monitoring regional disease progression in chronic obstructive pulmonary disease (COPD) patients, linking expiratory- and inspiratory-based CT metrics over time. MATERIALS AND METHODS: Inspiratory and expiratory lung CT scans were acquired from 89 COPD subjects with varying Global Initiative for Chronic Obstructive Lung Disease (GOLD) status at 30 days (n = 13) or 1 year (n = 76) from baseline as part of the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) clinical trial. PRMs of CT data were used to quantify the relative volumes of normal parenchyma (PRM(Normal)), emphysema (PRM(Emph)), and functional small airways disease (PRM(fSAD)). PRM measurement variability was assessed using the 30-day interval data. Changes in PRM metrics over a 1-year period were correlated to pulmonary function (forced expiratory volume at 1 second [FEV1]). A theoretical model that simulates PRM changes from COPD was compared to experimental findings. RESULTS: PRM metrics varied by ∼6.5% of total lung volume for PRM(Normal) and PRM(fSAD) and 1% for PRM(Emph) when testing 30-day repeatability. Over a 1-year interval, only PRM(Emph) in severe COPD subjects produced significant change (19%-21%). However, 11 of 76 subjects showed changes in PRM(fSAD) greater than variations observed from analysis of 30-day data. Mathematical model simulations agreed with experimental PRM results, suggesting fSAD is a transitional phase from normal parenchyma to emphysema. CONCLUSIONS: PRM of lung CT scans in COPD patients provides an opportunity to more precisely characterize underlying disease phenotypes, with the potential to monitor disease status and therapy response.


Subject(s)
Lung/diagnostic imaging , Pattern Recognition, Automated/methods , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Subtraction Technique , Tomography, X-Ray Computed/methods , Adult , Aged , Aged, 80 and over , Algorithms , Disease Progression , Female , Humans , Longitudinal Studies , Male , Middle Aged , Radiographic Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...