Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 49(15): 4459-69, 2006 Jul 27.
Article in English | MEDLINE | ID: mdl-16854051

ABSTRACT

The discovery and pharmacological evaluation of potent, selective, and orally bioavailable growth hormone secretagogue receptor (GHS-R) antagonists are reported. Previously, 2,4-diaminopyrimidine-based GHS-R antagonists reported from our laboratories have been shown to be dihydrofolate reductase (DHFR) inhibitors. By comparing the X-ray crystal structure of DHFR docked with our GHS-R antagonists and GHS-R modeling, we designed and synthesized a series of potent and DHFR selective GHS-R antagonists with good pharmacokinetic (PK) profiles. An amide derivative 13d (Ca2+ flux IC50 = 188 nM, [brain]/[plasma] = 0.97 @ 8 h in rat) showed a 10% decrease in 24 h food intake in rats, and over 5% body weight reduction after 14-day oral treatment in diet-induced obese (DIO) mice. In comparison, a urea derivative 14c (Ca2+ flux IC50 = 7 nM, [brain]/[plasma] = 0.0 in DIO) failed to show significant effect on food intake in the acute feeding DIO model. These observations demonstrated for the first time that peripheral GHS-R blockage with small molecule GHS-R antagonists might not be sufficient for suppressing appetite and inducing body weight reduction.


Subject(s)
Aminopyridines/chemical synthesis , Anti-Obesity Agents/chemical synthesis , Receptors, G-Protein-Coupled/antagonists & inhibitors , Administration, Oral , Amides/chemical synthesis , Amides/pharmacology , Aminopyridines/pharmacology , Animals , Anti-Obesity Agents/pharmacology , Appetite Depressants/chemical synthesis , Appetite Depressants/pharmacology , Biological Availability , Body Weight/drug effects , Cell Line , Crystallography, X-Ray , Eating/drug effects , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Models, Molecular , Molecular Structure , Rats , Rats, Sprague-Dawley , Receptors, Ghrelin , Structure-Activity Relationship , Urea/analogs & derivatives , Urea/chemical synthesis , Urea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...