Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Aging Neurosci ; 12: 596438, 2020.
Article in English | MEDLINE | ID: mdl-33324196

ABSTRACT

While in young adults (YAs) the underlying neural mechanisms of motor learning are well-studied, studies on the involvement of the somatosensory system during motor skill learning in older adults (OAs) remain sparse. Therefore, the aim of the present study was to investigate motor learning-induced neuroplasticity in the primary somatosensory cortex (S1) in YAs and OAs. Somatosensory evoked potentials (SEPs) were used to quantify somatosensory activation prior and immediately after motor skill learning in 20 right-handed healthy YAs (age range: 19-35 years) and OAs (age range: 57-76 years). Participants underwent a single session of a 30-min co-contraction task of the abductor pollicis brevis (APB) and deltoid muscle. To assess the effect of motor learning, muscle onset asynchrony (MOA) between the onsets of the contractions of both muscles was measured using electromyography monitoring. In both groups, MOA shortened significantly during motor learning, with YAs showing bigger reductions. No changes were found in SEP amplitudes after motor learning in both groups. However, a correlation analysis revealed an association between baseline SEP amplitudes of the N20/P25 and N30 SEP component and the motor learning slope in YAs such that higher amplitudes are related to higher learning. Hence, the present findings suggest that SEP amplitudes might serve as a predictor of individual motor learning success, at least in YAs. Additionally, our results suggest that OAs are still capable of learning complex motor tasks, showing the importance of motor training in higher age to remain an active part of our society as a prevention for care dependency.

2.
Neuroimage ; 221: 117175, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32682989

ABSTRACT

Alpha, the most prominent human brain rhythm, might reflect a mechanism of functional inhibition for gating neural processing. This concept has been derived predominantly from local measures of inhibition, while large-scale network mechanisms to guide information flow are largely unknown. Here, we investigated functional connectivity changes on a whole-brain level by concurrent transcranial alternating current stimulation (tACS) and resting-state functional MRI in humans. We specifically focused on somatosensory alpha-band oscillations by adjusting the tACS frequency to each individual´s somatosensory (mu-) alpha peak frequency (mu-tACS). Potential differences of Eigenvector Centrality of primary somatosensory cortex (S1) as well as on a whole brain level between mu-tACS and sham were analyzed. Our results demonstrate that mu-tACS induces a locally-specific decrease in whole-brain functional connectivity of left S1. An additional exploratory analysis revealed that this effect primarily depends on a decrease in functional connectivity between S1 and a network of regions that are crucially involved in somatosensory processing. Furthermore, the decrease in functional centrality was specific to mu-tACS and was not observed when tACS was applied in the gamma-range in an independent study. Our findings provide evidence that modulated somatosensory (mu-) alpha-activity may affect whole-brain network level activity by decoupling primary sensory areas from other hubs involved in sensory processing.


Subject(s)
Alpha Rhythm/physiology , Brain/physiology , Connectome , Magnetic Resonance Imaging , Nerve Net/physiology , Somatosensory Cortex/physiology , Transcranial Direct Current Stimulation , Adult , Brain/diagnostic imaging , Female , Humans , Male , Nerve Net/diagnostic imaging , Somatosensory Cortex/diagnostic imaging , Young Adult
3.
Front Hum Neurosci ; 11: 160, 2017.
Article in English | MEDLINE | ID: mdl-28420973

ABSTRACT

Several studies investigating the relationship between physical activity and cognition showed that exercise interventions might have beneficial effects on working memory, executive functions as well as motor fitness in old adults. Recently, movement based video games (exergames) have been introduced to have the capability to improve cognitive function in older adults. Healthy aging is associated with a loss of cognitive, as well as sensorimotor functions. During exergaming, participants are required to perform physical activities while being simultaneously surrounded by a cognitively challenging environment. However, only little is known about the impact of exergame training interventions on a broad range of motor, sensory, and cognitive skills. Therefore, the present study aims at investigating the effects of an exergame training over 6 weeks on cognitive, motor, and sensory functions in healthy old participants. For this purpose, 30 neurologically healthy older adults were randomly assigned to either an experimental (ETG, n = 15, 1 h training, twice a week) or a control group (NTG, n = 15, no training). Several cognitive tests were performed before and after exergaming in order to capture potential training-induced effects on processing speed as well as on executive functions. To measure the impact of exergaming on sensorimotor performance, a test battery consisting of pinch and grip force of the hand, tactile acuity, eye-hand coordination, flexibility, reaction time, coordination, and static balance were additionally performed. While we observed significant improvements in the trained exergame (mainly in tasks that required a high load of coordinative abilities), these gains did not result in differential performance improvements when comparing ETG and NTG. The only exergaming-induced difference was a superior behavioral gain in fine motor skills of the left hand in ETG compared to NTG. In an exploratory analysis, within-group comparison revealed improvements in sensorimotor and cognitive tasks (ETG) while NTG only showed an improvement in a static balance test. Taken together, the present study indicates that even though exergames might improve gaming performance, our behavioral assessment was probably not sensitive enough to capture exergaming-induced improvements. Hence, we suggest to use more tailored outcome measures in future studies to assess potential exergaming-induced changes.

4.
Front Hum Neurosci ; 11: 54, 2017.
Article in English | MEDLINE | ID: mdl-28220070

ABSTRACT

Mirror visual feedback (MVF) is a promising approach to enhance motor performance without training in healthy adults as well as in patients with focal brain lesions. There is preliminary evidence that a functional modulation within and between primary motor cortices as assessed with transcranial magnetic stimulation (TMS) might be one candidate mechanism mediating the observed behavioral effects. Recently, studies using task-based functional magnetic resonance imaging (fMRI) have indicated that MVF-induced functional changes might not be restricted to the primary motor cortex (M1) but also include higher order regions responsible for perceptual-motor coordination and visual attention. However, aside from these instantaneous task-induced brain changes, little is known about learning-related neuroplasticity induced by MVF. Thus, in the present study, we assessed MVF-induced functional network plasticity with resting-state fMRI (rs-fMRI). We performed rs-fMRI of 35 right-handed, healthy adults before and after performing a complex ball-rotation task. The primary outcome measure was the performance improvement of the untrained left hand (LH) before and after right hand (RH) training with MVF (mirror group [MG], n = 17) or without MVF (control group [CG], n = 18). Behaviorally, the MG showed superior performance improvements of the untrained LH. In resting-state functional connectivity (rs-FC), an interaction analysis between groups showed changes in left visual cortex (V1, V2) revealing an increase of centrality in the MG. Within group comparisons showed further functional alterations in bilateral primary sensorimotor cortex (SM1), left V4 and left anterior intraparietal sulcus (aIP) in the MG, only. Importantly, a correlation analysis revealed a linear positive relationship between MVF-induced improvements of the untrained LH and functional alterations in left SM1. Our results suggest that MVF-induced performance improvements are associated with functional learning-related brain plasticity and have identified additional target regions for non-invasive brain stimulation techniques, a finding of potential interest for neurorehabilitation.

5.
Front Hum Neurosci ; 11: 16, 2017.
Article in English | MEDLINE | ID: mdl-28197085

ABSTRACT

Older adults frequently experience a decrease in balance control that leads to increased numbers of falls, injuries and hospitalization. Therefore, evaluating older adults' ability to maintain balance and examining new approaches to counteract age-related decline in balance control is of great importance for fall prevention and healthy aging. Non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS) have been shown to beneficially influence motor behavior and motor learning. In the present study, we investigated the influence of tDCS applied over the leg area of the primary motor cortex (M1) on balance task learning of healthy elderly in a dynamic balance task (DBT). In total, 30 older adults were enrolled in a cross-sectional, randomized design including two consecutive DBT training sessions. Only during the first DBT session, either 20 min of anodal tDCS (a-tDCS) or sham tDCS (s-tDCS) were applied and learning improvement was compared between the two groups. Our data showed that both groups successfully learned to perform the DBT on both training sessions. Interestingly, between-group analyses revealed no difference between the a-tDCS and the s-tDCS group regarding their level of task learning. These results indicate that the concurrent application of tDCS over M1 leg area did not elicit DBT learning enhancement in our study cohort. However, a regression analysis revealed that DBT performance can be predicted by the kinematic profile of the movement, a finding that may provide new insights for individualized approaches of treating balance and gait disorders.

6.
Front Hum Neurosci ; 10: 560, 2016.
Article in English | MEDLINE | ID: mdl-27857687

ABSTRACT

Transcranial alternating current stimulation (tACS) is a form of noninvasive brain stimulation and is capable of influencing brain oscillations and cortical networks. In humans, the endogenous oscillation frequency in sensorimotor areas peaks at 20 Hz. This beta-band typically occurs during maintenance of tonic motor output and seems to play a role in interhemispheric coordination of movements. Previous studies showed that tACS applied in specific frequency bands over primary motor cortex (M1) or the visual cortex modulates cortical excitability within the stimulated hemisphere. However, the particular impact remains controversial because effects of tACS were shown to be frequency, duration and location specific. Furthermore, the potential of tACS to modulate cortical interhemispheric processing, like interhemispheric inhibition (IHI), remains elusive. Transcranial magnetic stimulation (TMS) is a noninvasive and well-tolerated method of directly activating neurons in superficial areas of the human brain and thereby a useful tool for evaluating the functional state of motor pathways. The aim of the present study was to elucidate the immediate effect of 10 min tACS in the ß-frequency band (20 Hz) over left M1 on IHI between M1s in 19 young, healthy, right-handed participants. A series of TMS measurements (motor evoked potential (MEP) size, resting motor threshold (RMT), IHI from left to right M1 and vice versa) was performed before and immediately after tACS or sham using a double-blinded, cross-over design. We did not find any significant tACS-induced modulations of intracortical excitation (as assessed by MEP size and RMT) and/or IHI. These results indicate that 10 min of 20 Hz tACS over left M1 seems incapable of modulating immediate brain activity or inhibition. Further studies are needed to elucidate potential aftereffects of 20 Hz tACS as well as frequency-specific effects of tACS on intracortical excitation and IHI.

7.
Clin Neurophysiol ; 127(6): 2455-62, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27178865

ABSTRACT

OBJECTIVE: The aim of the study was to investigate the effects of facilitatory anodal tDCS (a-tDCS) applied over the leg area of the primary motor cortex on learning a complex whole-body dynamic balancing task (DBT). We hypothesized that a-tDCS during DBT enhances learning performance compared to sham tDCS (s-tDCS). METHODS: In a randomized, parallel design, we applied either a-tDCS (n=13) or s-tDCS (n=13) in a total of 26 young subjects while they perform the DBT. Task performance and error rates were compared between groups. Additionally, we investigated the effect of tDCS on the relationship between performance and kinematic variables capturing different aspects of task execution. RESULTS: A-tDCS over M1 leg area promotes balance performance in a DBT relative to s-tDCS, indicated by higher performance and smaller error scores. Furthermore, a-tDCS seems to mediate the relationship between DBT performance and the kinematic variable velocity. CONCLUSIONS: Our findings provide novel evidence for the ability of tDCS to improve dynamic balance learning, a fact, particularly important in the context of treating balance and gait disorders. SIGNIFICANCE: TDCS facilitates dynamic balance performance by strengthening the inverse relationship of performance and velocity, thus making tDCS one potential technique to improve walking ability or help to prevent falls in patients in the future.


Subject(s)
Leg/innervation , Motor Cortex/physiology , Postural Balance , Transcranial Direct Current Stimulation , Adult , Biomechanical Phenomena , Female , Humans , Leg/physiology , Male
8.
Front Aging Neurosci ; 7: 176, 2015.
Article in English | MEDLINE | ID: mdl-26441638

ABSTRACT

Healthy aging is associated with a variety of functional and structural brain alterations. These age-related brain alterations have been assumed to negatively impact cognitive and motor performance. Especially important for the execution of everyday activities in older adults (OA) is the ability to perform movements that depend on both hands working together. However, bimanual coordination is typically deteriorated with increasing age. Hence, a deeper understanding of such age-related brain-behavior alterations might offer the opportunity to design future interventional studies in order to delay or even prevent the decline in cognitive and/or motor performance over the lifespan. Here, we examined to what extent the capability to acquire and maintain a novel bimanual motor skill is still preserved in healthy OA as compared to their younger peers (YA). For this purpose, we investigated performance of OA (n = 26) and YA (n = 26) in a bimanual serial reaction time task (B-SRTT), on two experimental sessions, separated by 1 week. We found that even though OA were generally slower in global response times, they showed preserved learning capabilities in the B-SRTT. However, sequence specific learning was more pronounced in YA as compared to OA. Furthermore, we found that switching between hands during B-SRTT learning trials resulted in increased response times (hand switch costs), a phenomenon that was more pronounced in OA. These hand switch costs were reduced in both groups over the time course of learning. More interestingly, there were no group differences in hand switch costs on the second training session. These results provide novel evidence that bimanual motor skill learning is capable of reducing age-related deficits in hand switch costs, a finding that might have important implications to prevent the age-related decline in sensorimotor function.

9.
Eur J Neurosci ; 41(11): 1475-83, 2015 May.
Article in English | MEDLINE | ID: mdl-25912048

ABSTRACT

Previous studies have indicated that age-related behavioral alterations are not irreversible but are subject to amelioration through specific training interventions. Both training paradigms and non-invasive brain stimulation (NIBS) can be used to modulate age-related brain alterations and thereby influence behavior. It has been shown that mirror visual feedback (MVF) during motor skill training improves performance of the trained and untrained hands in young adults. The question remains of whether MVF also improves motor performance in older adults and how performance improvements can be optimised via NIBS. Here, we sought to determine whether anodal transcranial direct current stimulation (a-tDCS) can be used to augment MVF-induced performance improvements in manual dexterity. We found that older adults receiving a-tDCS over the right primary motor cortex (M1) during MVF showed superior performance improvements of the (left) untrained hand relative to sham stimulation. An additional control experiment in participants receiving a-tDCS over the right M1 only (without MVF/motor training of the right hand) revealed no significant behavioral gains in the left (untrained) hand. On the basis of these findings, we propose that combining a-tDCS with MVF might be relevant for future clinical studies that aim to optimise the outcome of neurorehabilitation.


Subject(s)
Feedback, Sensory , Motor Cortex/physiology , Psychomotor Performance/physiology , Transcranial Direct Current Stimulation , Aged , Female , Functional Laterality , Humans , Male , Motor Activity
10.
J Neurophysiol ; 113(7): 2383-9, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25632079

ABSTRACT

Mirror visual feedback (MVF) during motor training has been shown to improve motor performance of the untrained hand. Here we thought to determine if MVF-induced performance improvements of the left hand can be augmented by upregulating plasticity in right primary motor cortex (M1) by means of anodal transcranial direct current stimulation (a-tDCS) while subjects trained with the right hand. Participants performed a ball-rotation task with either their left (untrained) or right (trained) hand on two consecutive days (days 1 and 2). During training with the right hand, MVF was provided concurrent with two tDCS conditions: group 1 received a-tDCS over right M1 (n = 10), whereas group 2 received sham tDCS (s-tDCS, n = 10). On day 2, performance was reevaluated under the same experimental conditions compared with day 1 but without tDCS. While baseline performance of the left hand (day 1) was not different between groups, a-tDCS exhibited stronger MVF-induced performance improvements compared with s-tDCS. Similar results were observed for day 2 (without tDCS application). A control experiment (n = 8) with a-tDCS over right M1 as outlined above but without MVF revealed that left hand improvement was significantly less pronounced than that induced by combined a-tDCS and MVF. Based on these results, we provide novel evidence that upregulating activity in the untrained M1 by means of a-tDCS is capable of augmenting MVF-induced performance improvements in young normal volunteers. Our findings suggest that concurrent MVF and tDCS might have synergistic and additive effects on motor performance of the untrained hand, a result of relevance for clinical approaches in neurorehabilitation and/or exercise science.


Subject(s)
Feedback, Sensory/physiology , Illusions/physiology , Learning/physiology , Motor Skills/physiology , Movement/physiology , Transcranial Direct Current Stimulation/methods , Adult , Double-Blind Method , Female , Functional Laterality/physiology , Humans , Male , Young Adult
11.
Front Hum Neurosci ; 9: 702, 2015.
Article in English | MEDLINE | ID: mdl-26834605

ABSTRACT

Mirror visual feedback (MVF) is a promising technique in clinical settings that can be used to augment performance of an untrained limb. Several studies with healthy volunteers and patients using transcranial magnetic stimulation (TMS) or functional magnetic resonance imaging (fMRI) indicate that functional alterations within primary motor cortex (M1) might be one candidate mechanism that could explain MVF-induced changes in behavior. Until now, most studies have used MVF to improve performance of the non-dominant hand (NDH). The question remains if the behavioral effect of MVF differs according to hand dominance. Here, we conducted a study with two groups of young, healthy right-handed volunteers who performed a complex ball-rotation task while receiving MVF of the dominant (n = 16, group 1, MVFDH) or NDH (n = 16, group 2, MVFNDH). We found no significant differences in baseline performance of the untrained hand between groups before MVF was applied. Furthermore, there was no significant difference in the amount of performance improvement between MVFDH and MVFNDH indicating that the outcome of MVF seems not to be influenced by hand dominance. Thus our findings might have important implications in neurorehabilitation suggesting that patients suffering from unilateral motor impairments might benefit from MVF regardless of the dominance of the affected limb.

12.
Neurosci Lett ; 552: 76-80, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-23933205

ABSTRACT

The aim of the study was to investigate tDCS effects on motor skill learning in a complex whole body dynamic balance task (DBT). We hypothesized that tDCS over the supplementary motor area (SMA), a region that is known to be involved in the control of multi-joint whole body movements, will result in polarity specific changes in DBT learning. In a randomized sham-controlled, double-blinded parallel design, we applied 20 min of tDCS over the supplementary motor area (SMA) and prefrontal cortex (PFC) while subjects performed a DBT. Anodal tDCS over SMA with the cathode placed over contralateral PFC impaired motor skill learning of the DBT compared to sham. This effect was still present on the second day of training. Reversing the polarity (cathode over SMA, anode over PFC) did not affect motor skill learning neither on the first nor on the second day of training. To better disentangle whether the impaired motor skill learning was due to a modulation of SMA or PFC, we performed an additional control experiment. Here, we applied anodal tDCS over SMA together with a larger and presumably more ineffective electrode (cathode) over PFC. Interestingly this alternative tDCS electrode setup did not affect the outcome of DBT learning. Our results provide novel evidence that a modulation of the (right) PFC seems to impair complex multi-joint motor skill learning. Hence, future studies should take the positioning of both tDCS electrodes into account when investigating complex motor skill learning.


Subject(s)
Learning/physiology , Motor Cortex/physiology , Motor Skills/physiology , Adult , Double-Blind Method , Electric Stimulation/methods , Female , Humans , Male , Postural Balance/physiology , Prefrontal Cortex/physiology , Random Allocation
13.
J Neurosci Methods ; 212(2): 234-6, 2013 Jan 30.
Article in English | MEDLINE | ID: mdl-23103376

ABSTRACT

Transcranial direct current stimulation (tDCS) modulates cortical excitability thereby influencing behavior and learning. While previous studies focused on tDCS after-effects, limited information about "online" tDCS effects is available. This in turn is an important prerequisite to better characterize and/or optimize tDCS effects. Here, we aimed to explore the feasibility of recording low-artifact somatosensory evoked potentials (SEPs) during tDCS using a novel ring electrode setup. We recorded SEP before, during and after 10 min of anodal or sham tDCS using a full-band direct current (DC) EEG system in a total number of 3 subjects. SEPs were recorded in the bore of the tDCS ring electrode. Using this approach, no tDCS-induced artifacts could be observed after the application of a standard EEG filter. This new setup might help to better characterize how tDCS alters evoked brain responses thus providing novel insight into underlying physiological effects during stimulation.


Subject(s)
Brain/physiology , Electrodes , Evoked Potentials, Somatosensory/physiology , Transcranial Magnetic Stimulation/instrumentation , Transcranial Magnetic Stimulation/methods , Adult , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...