Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Reports ; 18(12): 2400-2417, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38039971

ABSTRACT

In mammals, loss of retinal cells due to disease or trauma is an irreversible process that can lead to blindness. Interestingly, regeneration of retinal neurons is a well established process in some non-mammalian vertebrates and is driven by the Müller glia (MG), which are able to re-enter the cell cycle and reprogram into neurogenic progenitors upon retinal injury or disease. Progress has been made to restore this mechanism in mammals to promote retinal regeneration: MG can be stimulated to generate new neurons in vivo in the adult mouse retina after the over-expression of the pro-neural transcription factor Ascl1. In this study, we applied the same strategy to reprogram human MG derived from fetal retina and retinal organoids into neurons. Combining single cell RNA sequencing, single cell ATAC sequencing, immunofluorescence, and electrophysiology we demonstrate that human MG can be reprogrammed into neurogenic cells in vitro.


Subject(s)
Neurogenesis , Neuroglia , Animals , Mice , Humans , Neuroglia/metabolism , Neurogenesis/physiology , Neurons/metabolism , Retina/metabolism , Mammals/metabolism , Ependymoglial Cells/metabolism , Cell Proliferation/physiology , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism
2.
Cell Rep Methods ; 3(8): 100548, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37671011

ABSTRACT

With a critical need for more complete in vitro models of human development and disease, organoids hold immense potential. Their complex cellular composition makes single-cell sequencing of great utility; however, the limitation of current technologies to a handful of treatment conditions restricts their use in screens or studies of organoid heterogeneity. Here, we apply sci-Plex, a single-cell combinatorial indexing (sci)-based RNA sequencing (RNA-seq) multiplexing method to retinal organoids. We demonstrate that sci-Plex and 10× methods produce highly concordant cell-class compositions and then expand sci-Plex to analyze the cell-class composition of 410 organoids upon modulation of critical developmental pathways. Leveraging individual organoid data, we develop a method to measure organoid heterogeneity, and we identify that activation of Wnt signaling early in retinal organoid cultures increases retinal cell classes up to 6 weeks later. Our data show sci-Plex's potential to dramatically scale up the analysis of treatment conditions on relevant human models.


Subject(s)
Critical Pathways , Organoids , Humans , Cell Differentiation , Neurons , Retina
3.
bioRxiv ; 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37398481

ABSTRACT

With a critical need for more complete in vitro models of human development and disease, organoids hold immense potential. Their complex cellular composition makes single-cell sequencing of great utility; however, the limitation of current technologies to a handful of treatment conditions restricts their use in screens or studies of organoid heterogeneity. Here, we apply sci-Plex, a single-cell combinatorial indexing (sci)-based RNA-seq multiplexing method to retinal organoids. We demonstrate that sci-Plex and 10x methods produce highly concordant cell class compositions and then expand sci-Plex to analyze the cell class composition of 410 organoids upon modulation of critical developmental pathways. Leveraging individual organoid data, we develop a method to measure organoid heterogeneity, and we identify that activation of Wnt signaling early in retinal organoid cultures increases retinal cell classes up to six weeks later. Our data show sci-Plex's potential to dramatically scale-up the analysis of treatment conditions on relevant human models.

SELECTION OF CITATIONS
SEARCH DETAIL
...