Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Clin Biomech (Bristol, Avon) ; 25(1): 63-9, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19766363

ABSTRACT

BACKGROUND: We examined how a soft shell hip protector affects the magnitude and distribution of force to the hip during simulated falls, and how the protective effect depends on the fall direction and the amount of soft tissue padding over the hip. METHODS: Fourteen young women with either high or low body mass index participated in a "pelvis release experiment" that simulated falls resulting in either lateral, anterolateral or posterolateral impact to the pelvis with/without a soft shell hip protector. Outcome variables were the magnitude and location of peak pressure (d, theta) with respect to the greater trochanter, total impact force, and percent force applied to four defined hip regions. FINDINGS: The soft shell hip protector reduced peak pressure by 70%. The effect was two times greater in low than high body mass index individuals. The protector shunted the peak pressure distally along the shaft of the femur (d=52 mm (SD 22), theta=-21 degrees (SD 49) in the unpadded trials versus d=81 mm (SD 23), theta=-10 degrees (SD 35) in the padded trials). Peak force averaged 12% greater in posterolateral and 17% lower in anterolateral than lateral falls. INTERPRETATION: Our results indicate that the hip protector we tested had a much stronger protective benefit for low than high body mass index individuals. Next generation protectors might be developed for improved shunting of pressure away from the femur, improved protection during posterolateral falls, and greater force attenuation for low body mass index individuals.


Subject(s)
Acceleration , Accidental Falls/prevention & control , Body Mass Index , Hip Fractures/prevention & control , Hip Fractures/physiopathology , Hip Joint/physiopathology , Models, Biological , Protective Devices , Adolescent , Adult , Computer Simulation , Equipment Design , Equipment Failure Analysis , Female , Humans , Pressure , Young Adult
2.
J Biomech ; 43(5): 818-25, 2010 Mar 22.
Article in English | MEDLINE | ID: mdl-20018287

ABSTRACT

Wearable hip protectors represent a promising strategy for reducing risk for hip fracture from a sideways fall. However, small changes in pad positioning may influence their protective benefit. Using a mechanical hip impact simulator, we investigated how three marketed soft shell hip protectors attenuate and redistribute the impact force applied to the hip, and how this depends on displacement from their intended position by 2.5 or 5 cm superiorly, posteriorly, inferiorly or anteriorly. For centrally-placed protectors, peak pressure was reduced 93% below the unpadded value by a 16 mm horseshoe-shaped protector, 93% by a 14 mm horseshoe protector, and 94% by a 16 mm continuous protector. In unpadded trials, 83% of the total force was applied to the skin overlying the proximal femur (danger zone). This was lowered to 19% by the centrally placed 16 mm horseshoe protector, to 34% by the 14 mm horseshoe, and to 40% by the 16 mm continuous protector. Corresponding reductions in peak force delivered to the femoral neck (relative to unpadded) were 45%, 38%, and 20%, respectively. The protective benefit of all three protectors decreased with pad displacement. For example, displacement of protectors by 5 cm anteriorly caused peak femoral neck force to increase 60% above centrally-placed values, and approach unpadded values. These results indicate that soft shell hip protectors provide substantial protective benefits, but decline in performance with small displacements from their intended position. Our findings confirm the need for correct and stable positioning of hip protectors in garment design.


Subject(s)
Accidental Falls/prevention & control , Hip Fractures/prevention & control , Hip Fractures/physiopathology , Protective Devices , Equipment Design , Equipment Failure Analysis , Humans , Pressure , Stress, Mechanical
3.
Science ; 319(5864): 807-10, 2008 Feb 08.
Article in English | MEDLINE | ID: mdl-18258914

ABSTRACT

We have developed a biomechanical energy harvester that generates electricity during human walking with little extra effort. Unlike conventional human-powered generators that use positive muscle work, our technology assists muscles in performing negative work, analogous to regenerative braking in hybrid cars, where energy normally dissipated during braking drives a generator instead. The energy harvester mounts at the knee and selectively engages power generation at the end of the swing phase, thus assisting deceleration of the joint. Test subjects walking with one device on each leg produced an average of 5 watts of electricity, which is about 10 times that of shoe-mounted devices. The cost of harvesting-the additional metabolic power required to produce 1 watt of electricity-is less than one-eighth of that for conventional human power generation. Producing substantial electricity with little extra effort makes this method well-suited for charging powered prosthetic limbs and other portable medical devices.


Subject(s)
Bioelectric Energy Sources , Electricity , Walking , Biomechanical Phenomena , Energy Metabolism , Humans , Knee Joint/physiology , Male , Muscle, Skeletal/physiology
5.
IEEE Trans Rehabil Eng ; 7(3): 289-300, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10498375

ABSTRACT

A real-time functional electrical stimulation (FES) state controller was designed that utilized sensory nerve cuff signals from the cat forelimb to control the timing of stimulation of the Palmaris Longus (PalL) muscle during walking on the treadmill. Sensory nerve signals from the median and superficial radial nerves provided accurate, reliable feedback related to foot contact and lift-off which, when analyzed with single threshold Schmitt triggers, produced valuable state information about the step cycle. The study involved three experiments: prediction of the timing of muscle activity in an open-loop configuration with no stimulation, prediction of the timing of muscle activity in a closed-loop configuration that included stimulation of the muscle over natural PaIL electromyogram (EMG), and temporary paralysis of selected forelimb muscles coupled with the use of the state controller to stimulate the PalL in order to return partial support function to the anesthetized limb. The FES state controller was tested in a variety of walking conditions, including different treadmill speeds and slopes. The results obtained in these experiments demonstrate that nerve cuff signals can provide a useful source of feedback to FES systems for control of limb function.


Subject(s)
Electric Stimulation/instrumentation , Gait/physiology , Muscles/innervation , Paralysis/rehabilitation , Animals , Cats , Computer Simulation , Electrodes, Implanted , Electromyography , Equipment Design , Exercise Test , Feedback/physiology , Forelimb/innervation , Median Nerve/physiology , Median Nerve/physiopathology , Models, Anatomic , Muscles/physiopathology , Nerve Block , Paralysis/diagnosis , Paralysis/physiopathology , Posture/physiology , Radial Nerve/physiology , Radial Nerve/physiopathology , Transducers
6.
IEEE Trans Biomed Eng ; 46(7): 797-809, 1999 Jul.
Article in English | MEDLINE | ID: mdl-10396898

ABSTRACT

In this study, we extracted gait-phase information from natural sensory nerve signals of primarily cutaneous origin recorded in the forelimbs of cats during walking on a motorized treadmill. Nerve signals were recorded in seven cats using nerve cuff or patch electrodes chronically implanted on the median, ulnar, and/or radial nerves. Features in the electroneurograms that were related to paw contact and lift-off were extracted by threshold detection. For four cats, a state controller model used information from two nerves (either median and radial, or ulnar and radial) to predict the timing of palmaris longus activity during walking. When fixed thresholds were used across a variety of walking conditions, the model predicted the timing of EMG activity with a high degree of accuracy (average error = 7.8%, standard deviation = 3.0%, n = 14). When thresholds were optimized for each condition, predictions were further improved (average error = 5.5%, standard deviation = 2.3%, n = 14). The overall accuracy with which EMG timing information could be predicted using signals from two cutaneous nerves for two constant walking speeds and three treadmill inclinations for four cats suggests that natural sensory signals may be implemented as a reliable source of feedback for closed-loop control of functional electrical stimulation (FES).


Subject(s)
Brachial Plexus/physiology , Electric Stimulation Therapy/instrumentation , Gait/physiology , Animals , Cats , Electric Stimulation Therapy/methods , Electrodes, Implanted , Electromyography , Feedback/physiology , Forelimb/anatomy & histology , Forelimb/physiology , Median Nerve/physiology , Models, Biological , Muscle, Skeletal/innervation , Radial Nerve/physiology , Reproducibility of Results , Signal Processing, Computer-Assisted , Ulnar Nerve/physiology
7.
J Neurophysiol ; 78(2): 1150-4, 1997 Aug.
Article in English | MEDLINE | ID: mdl-9307142

ABSTRACT

The relationship between local fibre stretch velocity (mechanical input) and the corresponding local reflex electromyographic (EMG) amplitude (a measure of the neural output) was assessed to determine the contribution of muscle spindle feedback in postural control. We hypothesized that traditionally measured input variables (e.g., the velocity of an external movement or whole muscle velocity) may not accurately represent the mechanical input to the muscle spindles, especially when the background forces are small. Three cats were trained to stand on pedestals while ankle rotations were applied to the left hindlimb. EMG and fiber movement in both proximal and distal regions of the muscle were recorded in addition to muscle length and tendon force. We found that local muscle velocity was correlated poorly with whole muscle velocity, demonstrating that internal and external muscle movements are often dissimilar, particularly during tasks that involve modest levels of muscle activation. Local EMG reflex amplitudes were correlated well with the corresponding local fiber stretch velocities (R values ranging from 0.5 to 0.8) but not with muscle stretch velocity. The lack of crossed correlations between fiber stretch velocities and reflex EMG amplitudes measured in proximal versus distal regions of the muscle suggests the presence of a local reflex component. It is concluded that changes in local muscle fiber length represent the mechanical input to spindles better than changes in the total muscle length. Additionally, spindles have a specific role in the reflex activation of nearby muscle fibers.


Subject(s)
Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology , Posture/physiology , Reaction Time/physiology , Reflex, Stretch/physiology , Animals , Cats , Electromyography , Feedback , Linear Models , Male , Muscle Spindles/physiology
8.
Can J Neurol Sci ; 23(4): 264-70, 1996 Nov.
Article in English | MEDLINE | ID: mdl-8951204

ABSTRACT

BACKGROUND: When H-reflexes are recorded during movement in human subjects, the stimulator current output is not a good indicator of sensory stimulation efficacy because of unavoidable nerve movement relative to the stimulus electrodes. Therefore, the M-wave amplitude has been used by researchers as an indicator of the efficacy of the stimulus. In this study we have examined the general validity of the hypothesis that the M-wave amplitude is directly proportional to the group I sensory afferent volley evoked by the stimulus. METHODS: A nerve recording cuff, stimulating electrodes, and EMG recording electrodes were implanted in cats. Nerve cuff recordings of centrally propagating volleys evoked by electrical stimuli were directly compared to M-waves produced by the same stimuli. Compound action potentials (CAPs) recorded in the sciatic nerve were compared with soleus M-waves during either tibial nerve or soleus muscle nerve stimulation. CAPs in the ulnar nerve were correlated with flexor carpi ulnaris M-waves during ulnar nerve stimulation. RESULTS AND CONCLUSIONS: Our findings indicate that for mixed nerve stimulation (e.g., tibial or ulnar nerve) the M-wave can be a reliable indicator of the centrally propagating sensory volley. Due to the high correlation between CAP and M-wave amplitude in these nerves, a small number of M-waves can give a good estimate of the size of the group I sensory volley. On the other hand, when nerves with only partially overlapping fibre diameter populations are stimulated (e.g., the soleus muscle nerve), the M-wave is not well correlated with the group I sensory volley and thus may not be used as a measure of the size of the input volley for H-reflex studies.


Subject(s)
Action Potentials/physiology , H-Reflex/physiology , Hindlimb/physiology , Peripheral Nerves/physiology , Animals , Cats , Electric Stimulation , Electromyography , Humans , Male , Sciatic Nerve/physiology , Ulnar Nerve/physiology
9.
J Rehabil Res Dev ; 33(2): 145-57, 1996 Apr.
Article in English | MEDLINE | ID: mdl-8724170

ABSTRACT

In current functional neuromuscular stimulation systems (FNS), control and feedback signals are usually provided by external sensors and switches, which pose problems such as donning and calibration time, cosmesis, and mechanical vulnerability. Artificial sensors are difficult to build and are insufficiently biocompatible and reliable for implantation. With the advent of methods for electrical interfacing with nerves and muscles, natural sensors are being considered as an alternative source of feedback and command signals for FNS. Decision making methods for higher level control can perform equally well with natural or artificial sensors. Recording nerve cuff electrodes have been developed and tested in animals and demonstrated to be feasible in humans for control of dorsiflexion in foot-drop and grasp in quadriplegia. Electromyographic signals, being one thousand times larger than electroneurograms, are easier to measure but have not been able to provide reliable indicators (e.g., of muscle fatigue) that would be useful in FNS systems. Animal studies have shown that information about the shape and movement of arm trajectories can be extracted from brain cortical activity, suggesting that FNS may ultimately be directly controllable from the central nervous system.


Subject(s)
Electric Stimulation Therapy , Neuromuscular Diseases/rehabilitation , Neuromuscular Junction/physiology , Spinal Cord Injuries/therapy , Synaptic Transmission/physiology , Electric Stimulation Therapy/instrumentation , Electric Stimulation Therapy/methods , Electrodes, Implanted , Feedback , Humans , Muscle Contraction/physiology , Neurons, Afferent/physiology , Spinal Cord Injuries/physiopathology
10.
J Neurosci Methods ; 45(3): 217-25, 1992 Dec.
Article in English | MEDLINE | ID: mdl-1294854

ABSTRACT

Muscle length in unrestrained, chronically implanted animals is conventionally measured with gauges consisting of a compliant silicone rubber tube filled with either hypertonic saline or mercury, the measurement principle being a continuous change in the electrical resistance of the fluid column inside the tubing with stretch. These gauges have two major disadvantages: (1) changes in resistance that are not related to changes in length, such as those produced by changes in temperature or osmotic dilution of the hypertonic saline, cause the measurements to drift, and (2) there is no direct and accurate way to calibrate the measurements. In this communication two new types of muscle length gauge are described that eliminate both problems. Both types make use of the principle of sonomicrometry, i.e., the measurement of distances with pulsed ultrasound. Both types have been successfully used to measure the length of the medial gastrocnemius muscle in chronically implanted cats during treadmill locomotion.


Subject(s)
Muscles/physiology , Transducers , Animals , Cats , Electrodes, Implanted , Electrophysiology , Muscle Contraction/physiology , Muscles/anatomy & histology , Ultrasonics , Walking
11.
J Biomech ; 25(9): 1067-74, 1992 Sep.
Article in English | MEDLINE | ID: mdl-1517267

ABSTRACT

The lengths and pinnation angles of muscle fibers in the medial gastrocnemius (MG) muscle have recently been measured in freely moving cats [Hoffer et al., Progr. Brain Res. 80, 75-85 (1989); Muscle Afferents and Spinal Control of Movement (1992)] using an ultrasound transit-time (USTT) technique. This method assumed that the velocity of ultrasound through intact muscles was constant, independent of fiber orientation, muscle activity, load, belly shape, or fiber movement. However, the velocity of ultrasound along and across the fibers has been reported to depend on the state of muscle activation in frog muscle experiments in vitro [Hatta et al., J. Physiol. 403, 193-209 (1988)]. In the present study, the assumption of constant velocity of ultrasound in the cat MG muscle was evaluated. In acute experiments, done in situ with intact blood supply, the USTT was measured along and across cat MG muscle fibers in the passive, reflexly activated and tetanically activated states, with and without changes in muscle fiber length, for situations that reproduced the length and force ranges normally used by cats during locomotion. The velocity of ultrasound was found to be independent of the state of activation or motion of the muscle, and independent of the direction of the measurement with respect to the fiber orientation, within a measurement uncertainty less than or equal to 0.2%. These results validate the use of the USTT technique for the measurement of intramuscular dimensions in freely moving animals.


Subject(s)
Muscles/physiology , Ultrasonics , Animals , Biomechanical Phenomena , Cats , Male , Muscle Contraction , Reflex , Walking
12.
J Neurophysiol ; 64(5): 1611-24, 1990 Nov.
Article in English | MEDLINE | ID: mdl-2283543

ABSTRACT

1. The objective of this study was to evaluate the action of the stretch reflex on the ankle extensor muscles of normal and decerebrate cats. 2. Experiments were performed on nine freely standing, unrestrained cats and repeated after decerebration at the premammillary level. The length, force, and electromyograph (EMG) of the soleus (SOL) and lateral gastrocnemius (LG) muscles were recorded with the use of implanted transducers and electrodes. 3. The left ankle joint was unexpectedly and reproducibly dorsiflexed by briefly stimulating the common peroneal (CP) nerve with electrodes within an implanted nerve cuff. The ensuing twitch contractions of the ankle dorsiflexor muscles stretched the ankle extensor muscles by 0.3-2.0 mm. Lidocaine was infused into another nerve cuff proximal to the stimulation site, to reversibly block the central propagation of evoked volleys in the CP nerve. 4. Reflex action before and after decerebration was measured from the responses to perturbations of similar amplitude and duration delivered at approximately matched background values of muscle length and force. In most cats the temperature of the hindlimb was monitored with an implanted thermistor and was restored to normal values with radiant heat after decerebration. 5. A stretch imposed on the tonically active ankle extensor muscles immediately caused a considerable rise in the force recorded from the triceps tendon. Within 30-40 ms the triceps force peaked, reaching a value 10-20 N greater than background, and then rapidly declined while the extensor muscles were still lengthening. The initial rise in force preceded any change in triceps EMG. It was attributed to the intrinsic viscoelasticity of the stretched muscles and tendons. After decerebration the magnitude and timing of the initial force peak did not change. 6. A short-latency reflex EMG burst was typically recorded from both the SOL and LG muscles, starting 11-17 ms after stimulus onset. After decerebration the area of the reflex EMG burst increased in all nine cats, typically by a factor of 2 or 3. 7. After decerebration a second, smaller increase in force was typically observed starting 60-80 ms after onset of stretch. This later force rise, interpreted to be of reflex origin, was rarely apparent in normal cats. 8. Decerebration introduced consistent modifications in postural behavior that were revealed by pushing down on the back of quietly standing cats. In normal cats, after brief pushes that stretched the ankle extensor muscles by 1-2 mm, the EMG, force, and length quickly stabilized near their initial values.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Reflex/physiology , Animals , Cats , Decerebrate State , Electrodes, Implanted , Electromyography , Female , Hindlimb/innervation , Male , Motor Neurons/physiology , Muscles/physiology , Peroneal Nerve/physiology , Sciatic Nerve/physiology , Tarsus, Animal/innervation
13.
J Neurophysiol ; 64(5): 1625-35, 1990 Nov.
Article in English | MEDLINE | ID: mdl-2283544

ABSTRACT

1. In the companion paper the gain of the stretch reflex in the ankle extensor muscles of normal cats was shown to increase after decerebration. The objectives of this study were 1) to identify the origin of the increased reflex and 2) to evaluate the contribution from afferents other than ankle extensor muscle afferents to the short-latency reflex. 2. Six cats were trained to stand unaided on four pedestals. Three cats were also trained to control the force exerted with the left hindlimb. The left soleus (SOL) and lateral gastrocnemius (LG) electromyogram (EMG), length, force, and temperature were recorded by chronically implanted electrodes and transducers. Measurements were taken before and after decerebration at the premammillary level. After decerebration limb temperature was returned to its normal range by the use of radiant heat. 3. Reproducible ramp-and-hold stretches and releases of the ankle extensor muscles were produced by a servo-controlled motor that rotated the left rear pedestal about the ankle joint. The length of the ankle extensor muscles changed by 2-3 mm within 30-35 ms after the onset of a ramp perturbation. Reflex responses before and after decerebration were compared at matched background values of muscle length and force. 4. In both the SOL and LG muscles, a short-latency EMG burst appeared 8-12 ms after stretch onset and lasted approximately 20 ms. After decerebration the onset of the rectified and smoothed EMG burst remained unchanged, but its area was increased by 36-89%. 5. The lateral gastrocnemius-soleus (LG-S) electroneurogram (ENG) was chronically recorded in two cats with a nerve cuff recording electrode implanted on the LG-S nerve. LG-S ENG activity started to increase soon after stretch onset and remained high during the entire ramp phase. The stretch-evoked LG-S ENG burst started approximately 8 ms earlier than the short-latency SOL and LG EMG bursts. It was interpreted to reflect mainly an increase in the activity of Group Ia and Ib muscle afferents, caused by increases in both muscle length and muscle force during the stretch. After the cats were decerebrated, for matched postural conditions, the area of the stretch-evoked LG-S ENG burst was increased by 29-35%. Because the length and force changes sensed by the muscle receptors before and after decerebration were similar, this suggests that the sensitivity of muscle spindles was increased as a consequence of altered activity in fusimotor neurons after decerebration.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Reflex/physiology , Animals , Cats , Decerebrate State , Electromyography , Hindlimb/innervation , Male , Motor Neurons/physiology , Muscles/innervation , Peroneal Nerve/physiology , Tarsus, Animal/innervation
14.
Can J Neurol Sci ; 17(3): 275-85, 1990 Aug.
Article in English | MEDLINE | ID: mdl-2207881

ABSTRACT

Manual tracking performance was studied in five patients with cerebellar incoordination due to unilateral cerebellar hemisphere lesions. The subjects were required to track a target on an oscilloscope screen by moving a cursor controlled by flexion-extension movements of the wrist. In comparison to normal subjects, the cerebellar patients, using their clinically affected arm, demonstrated irregular tracking patterns with inappropriate accelerations and decelerations, numerous high velocity peaks of movement, and an increased time lag between the cursor and the target. The addition of a viscous load provided by feeding back wrist velocity to a torque motor coupled to the apparatus resulted in significant improvement in tracking performance and suppression of the high velocity peaks. Increasing elastic stiffness by feeding back wrist position or inertial load by adding weights to the hand did not improve performance on this task. It is proposed that a hypotonic cerebellar limb behaves like an underdamped mechanical system. The addition of viscous loads helps restore more normal damping during voluntary movements of the arm.


Subject(s)
Cerebellar Diseases/physiopathology , Psychomotor Performance/physiology , Adolescent , Adult , Cerebellar Diseases/complications , Cerebellar Neoplasms/surgery , Feedback/physiology , Female , Humans , Male , Muscular Diseases/etiology , Muscular Diseases/physiopathology , Vision, Ocular/physiology
15.
Prog Brain Res ; 80: 75-85; discussion 57-60, 1989.
Article in English | MEDLINE | ID: mdl-2634287

ABSTRACT

The objective of this research was to compare the length of muscle spindles to the length of the whole muscle, during normal movements. Pairs of piezoelectric crystals were implanted near the origin and insertion of muscle fibres in the medial gastrocnemius (MG) muscle of cats. The distance between crystals was measured with pulsed ultrasound, the origin-to-insertion length of the MG muscle was measured with a transducer made of saline-filled silicone tubing, MG force was measured with a tendon force transducer and EMG activity was selectively recorded in the vicinity of implanted crystals. These signals were simultaneously recorded during posture or locomotion on a motorized treadmill. Three periods were identified in the step cycle, during which the relation between muscle length and spindle length changed dramatically. In period I (roughly corresponding to the late F and E1 phases of swing), the MG muscle and spindles followed similar length changes: both were stretched and then shortened by about 6 mm. In period II (corresponding to the stance phase, E2-E3) the MG muscle yielded under the weight of the body and was stretched by 1-3 mm, whereas the MG spindles typically continued shortening. In period III, the MG muscle shortened rapidly by 6-8 mm after the foot left the ground and then stretched again by about the same amount, whereas the spindles could remain nearly isometric. We attribute these large discrepancies in muscle and spindle length to the architecture of the MG muscle and the compliance of long tendinous elements in series with the spindles. We conclude that the length changes imposed on muscle spindles during voluntary movements are not simply related to the parent muscle length changes and cannot be estimated without taking into account the muscle architecture, the location of the spindle within the muscle, the level of muscle activation and the external load.


Subject(s)
Movement/physiology , Muscle Contraction , Muscles/physiology , Animals , Cats , Male
16.
J Neurosci Methods ; 21(2-4): 311-20, 1987 Oct.
Article in English | MEDLINE | ID: mdl-3682881

ABSTRACT

A computer-based system was developed to (1) train freely standing cats to match various target forces with the left hindlimb, (2) perturb the left ankle joint when the cat was maintaining a desired force and (3) compare reflex responses before and after decerebration. Cats quickly learned to stand unaided on 4 pedestals. During a training session, a range of target force windows was presented to the cat. A successful trial consisted of maintaining the force applied on the left rear pedestal within the target window for a preset time period. To assist the cat, a light was turned on whenever the force was within the target window. A food pellet reward was delivered by the computer after each successful trial. To test reflex responses, the position of the left hindlimb could be briefly perturbed by activating a servo-controlled printed motor configured to rotate the pedestal about the axis of the ankle joint. Perturbations that either flexed or extended the ankle joint were presented pseudo-randomly by the computer. This approach has been used to quantify the magnitude of muscle afferent volleys and the reflex EMG in ankle extensor muscles of normal and decerebrated cats, in response to similar mechanical perturbations. It has also been used to study dynamic features in the electroneurogram recorded from a cutaneous nerve by implanted nerve cuff electrodes, and the correlations among the electroneurogram, the vertical contact force applied on the pedestal and the force recorded from muscle tendons by implanted transducers. This approach may have general applications in the study of postural control, including the study of the discharge patterns of individual motor, sensory or spinal cord neurons in freely standing cats.


Subject(s)
Decision Making, Computer-Assisted/methods , Muscles/physiology , Reflex , Tarsus, Animal/physiology , Animals , Cats , Decerebrate State , Decision Making, Computer-Assisted/instrumentation , Electromyography , Hindlimb/innervation , Hindlimb/physiology , Muscles/innervation , Neurons/physiology , Posture , Tarsus, Animal/innervation
17.
J Neurophysiol ; 57(2): 510-29, 1987 Feb.
Article in English | MEDLINE | ID: mdl-3559690

ABSTRACT

Fine flexible wire microelectrodes chronically implanted in the fifth lumbar ventral root (L5 VR) of 17 cats rendered stable records of the natural discharge patterns of 164 individual axons during locomotion on a treadmill. Fifty-one out of 164 axons were identified as motoneurons projecting to the anterior thigh muscle group. For these axons, the centrifugal propagation of action potentials was demonstrated by the technique of spike-triggered averaging using signals recorded from cuff electrodes implanted around the femoral nerve. The axonal conduction velocity was measured from the femoral nerve cuff records. For 43/51 motoneurons, the corresponding target muscle was identified by spike-triggered averaging of signals recorded from bipolar EMG electrodes implanted in each of the anterior thigh muscles: vastus intermedius, medialis and lateralis, sartorius anterior and medialis, and rectus femoris. For 32/51 motoneurons, the recruitment threshold during locomotion was determined from the mean value of the rectified digitally smoothed EMG of the target muscle measured at the time when the motoneuron fired its first spike for each step. The recruitment threshold of every motoneuron was relatively constant for a given speed of walking, but for some units there were small systematic variations as a function of treadmill speed (range: 0.1-1.3 m/s). Recruitment thresholds were standardized with respect to the mean value of peak EMG activity of the target muscle during 16 s of walking at 0.5 m/s. For 28/51 motoneurons recorded in nine cats, recruitment thresholds (range: 3-93% of peak target muscle EMG) were linearly correlated (r = 0.51, P less than 0.02) to axonal conduction velocities (range: 57-117 m/s). In addition, for seven recorded pairs of motoneurons that projected to the same muscle in the same cat, the recruitment thresholds were ordered by relative conduction velocities. Taken together, these results are consistent with the notion that, in normal cat locomotion up to a medium trot, anterior thigh motoneurons are progressively recruited in an orderly fashion.


Subject(s)
Axons/physiology , Hindlimb/innervation , Locomotion , Motor Neurons/physiology , Neural Conduction , Action Potentials , Animals , Cats , Electromyography , Female , Male , Neural Pathways/physiology , Spinal Nerve Roots/physiology , Time Factors
18.
J Neurophysiol ; 57(2): 530-53, 1987 Feb.
Article in English | MEDLINE | ID: mdl-3559691

ABSTRACT

Activity patterns were recorded from 51 motoneurons in the fifth lumbar ventral root of cats walking on a motorized treadmill at a range of speeds between 0.1 and 1.3 m/s. The muscle of destination of recorded motoneurons was identified by spike-triggered averaging of EMG recordings from each of the anterior thigh muscles. Forty-three motoneurons projected to one of the quadriceps (vastus medialis, vastus lateralis, vastus intermedius, or rectus femoris) or sartorius (anterior or medial) muscles of the anterior thigh. Anterior thigh motoneurons always discharged a single burst of action potentials per step cycle, even in multifunctional muscles (e.g., sartorius anterior) that exhibited more than one burst of EMG activity per step cycle. The instantaneous firing rates of most motoneurons were lowest upon recruitment and increased progressively during a burst, as long as the EMG was still increasing. Firing rates peaked midway through each burst and tended to decline toward the end of the burst. The initial, mean, and peak firing rates of single motoneurons typically increased for faster walking speeds. At any given walking speed, early recruited motoneurons typically reached higher firing rates than late recruited motoneurons. In contrast to decerebrated cats, initial doublets at the beginning of bursts were seen only rarely. In the 4/51 motoneurons that showed initial doublets, both the instantaneous frequency of the doublet and the probability of starting a burst with a doublet decreased for faster walking speeds. The modulations in firing rate of every motoneuron were found to be closely correlated to the smoothed electromyogram of its target muscle. For 32 identified motoneurons, the unit's instantaneous frequencygram was scaled linearly by computer to the rectified smoothed EMG recorded from each of the anterior thigh muscles. The covariance between unitary frequencygram and muscle EMG was computed for each muscle. Typically, the EMG profile of the target muscle accounted for 0.88-0.96 of the variance in unitary firing rate. The EMG profiles of the other anterior thigh muscles, when tested in the same way, usually accounted only for a significantly smaller fraction of the variance. Brief amplitude fluctuations observed in the EMG envelopes were usually also reflected in the individual motoneuron frequencygrams. To further demonstrate the relationship between unitary frequencygrams and EMG, EMG envelopes recorded during walking were used as templates to generate depolarizing currents that were applied intracellularly to lumbar motoneurons in an acute spinal preparation.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Hindlimb/innervation , Locomotion , Motor Neurons/physiology , Action Potentials , Animals , Cats , Differential Threshold , Electric Stimulation , Electromyography , Electronic Data Processing , Intracellular Membranes/physiology , Muscles/physiology , Recruitment, Neurophysiological
19.
J Neurophysiol ; 57(2): 554-62, 1987 Feb.
Article in English | MEDLINE | ID: mdl-3559692

ABSTRACT

Cat sartorius has two distinct anatomical portions, anterior (SA-a) and medial (SA-m). SA-a acts to extend the knee and also to flex the hip. SA-m acts to flex both the knee and the hip. The objective of this study was to investigate how a "single motoneuron pool" is used to control at least three separate functions mediated by the two anatomical portions of one muscle. Discharge patterns of single motoneurons projecting to the sartorius muscle were recorded using floating microelectrodes implanted in the L5 ventral root of cats. The electromyographic activity generated by the anterior and medial portions of sartorius was recorded with chronically implanted electrodes. The muscle portion innervated by each motoneuron was determined by spike-triggered averaging of the EMGs during walking on a motorized treadmill. During normal locomotion, SA-a exhibited two bursts of EMG activity per step cycle, one during the stance phase and one during the late swing phase. In contrast, every recorded motoneuron projecting to SA-a discharged a single burst of action potentials per step cycle. Some SA-a motoneurons discharged only during the stance phase, whereas other motoneurons discharged only during the late swing phase. In all cases, the instantaneous frequencygram of the motoneuron was well fit by the rectified smoothed EMG envelope generated by SA-a during the appropriate phase of the step cycle. During normal locomotion, SA-m exhibited a single burst of EMG activity per step cycle, during the swing phase. The temporal characteristics of the EMG bursts recorded from SA-m differed from the swing-phase EMG bursts generated by SA-a.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Hindlimb/innervation , Locomotion , Motor Neurons/physiology , Animals , Cats , Electromyography
20.
J Neurophysiol ; 57(2): 563-73, 1987 Feb.
Article in English | MEDLINE | ID: mdl-3559693

ABSTRACT

The responses of 11 individual motoneurons, the muscle to which each projected, plus all other muscles in the anterior thigh of the cat, were recorded following single non-noxious electrical stimuli to cutaneous nerves while the intact animal walked on a treadmill. The various excitatory and/or inhibitory responses were qualitatively similar for stimuli within the range 1.1-10 times threshold for group I fibers in the stimulated nerve (usually saphenous). Monarticular knee extensor muscles in the vastus group and their motoneurons were usually inhibited in the period 10- to 25-ms poststimulus. The faster contracting vastus medialis and lateralis muscles tended to have an excitatory rebound at approximately 25- to 40-ms poststimulus that was confined to the stance phase of the step cycle when these muscles were normally active. Biarticular hip flexor muscles rectus femoris and both the anterior and medial parts of sartorius and their motoneurons all had similar bimodal excitatory responses, including an early period 3- to 18-ms poststimulus and a later period 20- to 35-ms poststimulus. The short-latency excitatory responses appeared to be proportional to the normal recruitment of the muscles in the step cycle, whereas the long-latency responses tended to be phase advanced with respect to normal recruitment. Motoneurons projecting to muscles with two excitatory peaks tended to have similar excitatory responses at both latencies and occasionally responded at both latencies to a single stimulus.


Subject(s)
Hindlimb/innervation , Locomotion , Motor Neurons/physiology , Reflex/physiology , Skin Physiological Phenomena , Animals , Cats , Electromyography
SELECTION OF CITATIONS
SEARCH DETAIL
...