Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Appl Clin Med Phys ; : e14377, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695845

ABSTRACT

PURPOSE: A computational method based on Monte-Carlo calculations is presented and used to calculate isodose curves for a new upright and tilting CT scanner useful for radiation protection purposes. METHODS: The TOPAS code platform with imported CAD files for key components was used to construct a calculation space for the scanner. A sphere of water acts as the patient would by creating scatter out of the bore. Maximum intensity dose maps are calculated for various possible tilt angles to make sure radiation protection for site planning uses the maximum possible dose everywhere. RESULTS: The resulting maximum intensity isodose lines are more rounded than ones for just a single tilt angle and so closer to isotropic. These maximum intensity curves are closer to the isotropic assumption used in CTDI or DLP based methods of site planning and radiation protection. The isodose lines are similar to those of a standard CT scanner, just tilted upwards. There is more metal above the beam that lessens the dose above versus below isocenter. CONCLUSION: Aside from the orientation, this upright scanner is very similar to a typical CT scanner, and nothing different for shielding needs to be done for this new upright tilting CT scanner, because an isotropic scatter source is often assumed for any CT scanner.

2.
Med Phys ; 51(4): 2468-2478, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37856176

ABSTRACT

BACKGROUND: Flow altering angiographic procedures suffer from ill-defined, qualitative endpoints. Quantitative digital subtraction angiography (qDSA) is an emerging technology that aims to address this issue by providing intra-procedural blood velocity measurements from time-resolved, 2D angiograms. To date, qDSA has used 30 frame/s DSA imaging, which is associated with high radiation dose rate compared to clinical diagnostic DSA (up to 4 frame/s). PURPOSE: The purpose of this study is to demonstrate an interleaved x-ray imaging method which decreases the radiation dose rate associated with high frame rate qDSA while simultaneously providing low frame rate diagnostic DSA images, enabling the acquisition of both datasets in a single image sequence with a single injection of contrast agent. METHODS: Interleaved x-ray imaging combines low radiation dose image frames acquired at a high rate with high radiation dose image frames acquired at a low rate. The feasibility of this approach was evaluated on an x-ray system equipped with research prototype software for x-ray tube control. qDSA blood velocity quantification was evaluated in a flow phantom study for two lower dose interleaving protocols (LD1: 3.7 ± 0.02 mGy / s $3.7 \pm 0.02\ {\mathrm{mGy}}/{\mathrm{s}}$ and LD2: 1.7 ± 0.04 mGy / s $1.7 \pm 0.04{\mathrm{\ mGy}}/{\mathrm{s}}$ ) and one conventional (full dose) protocol ( 11.4 ± 0.04 mGy / s ) $11.4 \pm 0.04{\mathrm{\ mGy}}/{\mathrm{s}})$ . Dose was measured at the interventional reference point. Fluid velocities ranging from 24 to 45 cm/s were investigated. Gold standard velocities were measured using an ultrasound flow probe. Linear regression and Bland-Altman analysis were used to compare ultrasound and qDSA. RESULTS: The LD1 and LD2 interleaved protocols resulted in dose rate reductions of -67.7% and -85.5%, compared to the full dose qDSA scan. For the full dose protocol, the Bland-Altman limits of agreement (LOA) between qDSA and ultrasound velocities were [0.7, 6.7] cm/s with a mean difference of 3.7 cm/s. The LD1 interleaved protocol results were similar (LOA: [0.3, 6.9] cm/s, bias: 3.6 cm/s). The LD2 interleaved protocol resulted in slightly larger LOA: [-2.5, 5.5] cm/s with a decrease in the bias: 1.5 cm/s. Linear regression analysis showed a strong correlation between ultrasound and qDSA derived velocities using the LD1 protocol, with a R 2 ${R}^2$ of 0.96 $0.96$ , a slope of 1.05 $1.05$ and an offset of 1.9 $1.9$  cm/s. Similar values were also found for the LD2 protocol, with a R 2 ${R}^2$ of 0.93 $0.93$ , a slope of 0.98 $0.98$ and an offset of 2.0 $2.0$  cm/s. CONCLUSIONS: The interleaved method enables simultaneous acquisition of low-dose high-rate images for intra-procedural blood velocity quantification (qDSA) and high-dose low-rate images for vessel morphology evaluation (diagnostic DSA).


Subject(s)
Contrast Media , Angiography, Digital Subtraction/methods , X-Rays , Radiation Dosage
3.
J Vasc Interv Radiol ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38141780

ABSTRACT

PURPOSE: To assess the feasibility of using quantitative digital subtraction angiography (qDSA) to quantify arterial velocity in phantom and porcine stenotic iliac artery models. MATERIALS AND METHODS: Varying stenoses (mild, <50%; moderate, 50%-70%; and severe, >70%) were created in a silicone iliac artery phantom using vessel loops. Two-dimensional digital subtraction angiographies (DSAs) were performed, with velocities calculated using qDSA. qDSA velocities were compared with flow rates and velocities measured with an ultrasonic flow probe. Two-dimensional DSAs of the common and external iliac arteries were then performed in 4 swine (mean weight, 63 kg) before and after a severe stenosis (>70%) was created in the iliac artery using 3-0 silk suture. Peak systolic velocities on pulsed wave Doppler ultrasound (US) before and after stenosis creation were correlated with the qDSA velocities. Pearson correlation, linear regression, and analysis of variance were used for analysis. RESULTS: In the phantom study, ultrasonic probe velocities positively correlated with downstream qDSA (r = 0.65; P < .001) and negatively correlated with peristenotic qDSA velocities (r = -0.80; P < .001). In the swine study, statistically significant reductions in external iliac arterial velocity were noted on US and qDSA after stenosis creation (P < .05). US and qDSA velocities strongly correlated for all flow states with both 50% and 100% contrast concentrations (r = 0.82 and r = 0.74, respectively), with an estimated US-to-qDSA ratio of 1.3-1.5 (P < .001). qDSA velocities with 50% and 100% contrast concentrations also strongly correlated (r = 0.78; P < .001). CONCLUSIONS: In both phantom and swine stenosis models, changes in iliac arterial velocity could be quantified with qDSA, which strongly correlated with standard-of-care US.

4.
Radiology ; 307(3): e222685, 2023 05.
Article in English | MEDLINE | ID: mdl-36943077

ABSTRACT

Background Characterizing cerebrovascular hemodynamics in older adults is important for identifying disease and understanding normal neurovascular aging. Four-dimensional (4D) flow MRI allows for a comprehensive assessment of cerebral hemodynamics in a single acquisition. Purpose To establish reference intracranial blood flow and pulsatility index values in a large cross-sectional sample of middle-aged (45-65 years) and older (>65 years) adults and characterize the effect of age and sex on blood flow and pulsatility. Materials and Methods In this retrospective study, patients aged 45-93 years (cognitively unimpaired) underwent cranial 4D flow MRI between March 2010 and March 2020. Blood flow rates and pulsatility indexes from 13 major arteries and four venous sinuses and total cerebral blood flow were collected. Intraobserver and interobserver reproducibility of flow and pulsatility measures was assessed in 30 patients. Descriptive statistics (mean ± SD) of blood flow and pulsatility were tabulated for the entire group and by age and sex. Multiple linear regression and linear mixed-effects models were used to assess the effect of age and sex on total cerebral blood flow and vessel-specific flow and pulsatility, respectively. Results There were 759 patients (mean age, 65 years ± 8 [SD]; 506 female patients) analyzed. For intra- and interobserver reproducibility, median intraclass correlation coefficients were greater than 0.90 for flow and pulsatility measures across all vessels. Regression coefficients ß ± standard error from multiple linear regression showed a 4 mL/min decrease in total cerebral blood flow each year (age ß = -3.94 mL/min per year ± 0.44; P < .001). Mixed effects showed a 1 mL/min average annual decrease in blood flow (age ß = -0.95 mL/min per year ± 0.16; P < .001) and 0.01 arbitrary unit (au) average annual increase in pulsatility over all vessels (age ß = 0.011 au per year ± 0.001; P < .001). No evidence of sex differences was observed for flow (ß = -1.60 mL/min per male patient ± 1.77; P = .37), but pulsatility was higher in female patients (sex ß = -0.018 au per male patient ± 0.008; P = .02). Conclusion Normal reference values for blood flow and pulsatility obtained using four-dimensional flow MRI showed correlations with age. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Steinman in this issue.


Subject(s)
Cerebral Arteries , Cerebrovascular Circulation , Cranial Sinuses , Hemodynamics , Magnetic Resonance Imaging , Humans , Middle Aged , Aging , Aged , Blood Flow Velocity/physiology , Magnetic Resonance Imaging/methods , Cross-Sectional Studies , Male , Female , Aged, 80 and over , Retrospective Studies , Cranial Sinuses/diagnostic imaging , Cerebral Arteries/diagnostic imaging
5.
Magn Reson Imaging ; 97: 46-55, 2023 04.
Article in English | MEDLINE | ID: mdl-36581214

ABSTRACT

Cranial 4D flow MRI post-processing typically involves manual user interaction which is time-consuming and associated with poor repeatability. The primary goal of this study is to develop a robust quantitative velocity tool (QVT) that utilizes threshold-based segmentation techniques to improve segmentation quality over prior approaches based on centerline processing schemes (CPS) that utilize k-means clustering segmentation. This tool also includes an interactive 3D display designed for simplified vessel selection and automated hemodynamic visualization and quantification. The performances of QVT and CPS were compared in vitro in a flow phantom and in vivo in 10 healthy participants. Vessel segmentations were compared with ground-truth computed tomography in vitro (29 locations) and manual segmentation in vivo (13 locations) using linear regression. Additionally, QVT and CPS MRI flow rates were compared to perivascular ultrasound flow in vitro using linear regression. To assess internal consistency of flow measures in vivo, conservation of flow was assessed at vessel junctions using linear regression and consistency of flow along vessel segments was analyzed by fitting a Gaussian distribution to a histogram of normalized flow values. Post-processing times were compared between the QVT and CPS using paired t-tests. Vessel areas segmented in vitro (CPS: slope = 0.71, r = 0.95 and QVT: slope = 1.03, r = 0.95) and in vivo (CPS: slope = 0.61, r = 0.96 and QVT: slope = 0.93, r = 0.96) were strongly correlated with ground-truth area measurements. However, CPS (using k-means segmentation) consistently underestimated vessel areas. Strong correlations were observed between QVT and ultrasound flow (slope = 0.98, r = 0.96) as well as flow at junctions (slope = 1.05, r = 0.98). Mean and standard deviation of flow along vessel segments was 9.33e-16 ± 3.05%. Additionally, the QVT demonstrated excellent interobserver agreement and significantly reduced post-processing by nearly 10 min (p < 0.001). By completely automating post-processing and providing an easy-to-use 3D visualization interface for interactive vessel selection and hemodynamic quantification, the QVT offers an efficient, robust, and repeatable means to analyze cranial 4D flow MRI. This software is freely available at: https://github.com/uwmri/QVT.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Humans , Imaging, Three-Dimensional/methods , Blood Flow Velocity , Magnetic Resonance Imaging/methods , Hemodynamics , Tomography, X-Ray Computed
6.
J Magn Reson Imaging ; 54(3): 888-901, 2021 09.
Article in English | MEDLINE | ID: mdl-33694334

ABSTRACT

BACKGROUND: Vessel-wall enhancement (VWE) on black-blood MRI (BB MRI) has been proposed as an imaging marker for a higher risk of rupture and associated with wall inflammation. Whether VWE is causally linked to inflammation or rather induced by flow phenomena has been a subject of debate. PURPOSE: To study the effects of slow flow, spatial resolution, and motion-sensitized driven equilibrium (MSDE) preparation on signal intensities in BB MRI of patient-specific aneurysm flow models. STUDY TYPE: Prospective. SUBJECTS/FLOW ANEURYSM MODEL/VIRTUAL VESSELS: Aneurysm flow models based on 3D rotational angiography datasets of three patients with intracranial aneurysms were 3D printed and perfused at two different flow rates, with and without Gd-containing contrast agent. FIELD STRENGTH/SEQUENCE: Variable refocusing flip angle 3D fast-spin echo sequence at 3 T with and without MSDE with three voxel sizes ((0.5 mm)3 , (0.7 mm)3 , and (0.9 mm)3 ); time-resolved with phase-contrast velocity-encoding 3D spoiled gradient echo sequence (4D flow MRI). ASSESSMENT: Three independent observers performed a qualitative visual assessment of flow patterns and signal enhancement. Quantitative analysis included voxel-wise evaluation of signal intensities and magnitude velocity distributions in the aneurysm. STATISTICAL TESTS: Kruskal-Wallis test, potential regressions. RESULTS: A hyperintense signal in the lumen and adjacent to the aneurysm walls on BB MRI was colocalized with slow flow. Signal intensities increased by a factor of 2.56 ± 0.68 (P < 0.01) after administering Gd contrast. After Gd contrast administration, the signal was suppressed most in conjunction with high flows and with MSDE (2.41 ± 2.07 for slow flow without MSDE, and 0.87 ± 0.99 for high flow with MSDE). A clear result was not achieved by modifying the spatial resolution . DATA CONCLUSIONS: Slow-flow phenomena contribute substantially to aneurysm enhancement and vary with MRI parameters. This should be considered in the clinical setting when assessing VWE in patients with an unruptured aneurysm. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Intracranial Aneurysm , Black or African American , Humans , Imaging, Three-Dimensional , Intracranial Aneurysm/diagnostic imaging , Magnetic Resonance Angiography , Magnetic Resonance Imaging , Prospective Studies
7.
CVIR Endovasc ; 4(1): 11, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33411087

ABSTRACT

BACKGROUND: 2D digital subtraction angiography (DSA) is utilized qualitatively to assess blood velocity changes that occur during arterial interventions. Quantitative angiographic metrics, such as blood velocity, could be used to standardize endpoints during angiographic interventions. PURPOSE: To assess the accuracy and precision of a quantitative 2D DSA (qDSA) technique and to determine its feasibility for in vivo measurements of blood velocity. MATERIALS AND METHODS: A quantitative DSA technique was developed to calculate intra-procedural blood velocity. In vitro validation was performed by comparing velocities from the qDSA method and an ultrasonic flow probe in a bifurcation phantom. Parameters of interest included baseline flow rate, contrast injection rate, projection angle, and magnification. In vivo qDSA analysis was completed in five different branches of the abdominal aorta in two 50 kg swine and compared to 4D Flow MRI. Linear regression, Bland-Altman, Pearson's correlation coefficient and chi squared tests were used to assess the accuracy and precision of the technique. RESULTS: In vitro validation showed strong correlation between qDSA and flow probe velocities over a range of contrast injection and baseline flow rates (slope = 1.012, 95% CI [0.989,1.035], Pearson's r = 0.996, p < .0001). The application of projection angle and magnification corrections decreased variance to less than 5% the average baseline velocity (p = 0.999 and p = 0.956, respectively). In vivo validation showed strong correlation with a small bias between qDSA and 4D Flow MRI velocities for all five abdominopelvic arterial vessels of interest (slope = 1.01, Pearson's r = 0.880, p = <.01, Bias = 0.117 cm/s). CONCLUSION: The proposed method allows for accurate and precise calculation of blood velocities, in near real-time, from time resolved 2D DSAs.

8.
Cardiovasc Intervent Radiol ; 44(2): 310-317, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33025244

ABSTRACT

OBJECTIVE: There is no standardized and objective method for determining the optimal treatment endpoint (sub-stasis) during transarterial embolization. The objective of this study was to demonstrate the feasibility of using a quantitative digital subtraction angiography (qDSA) technique to characterize intra-procedural changes in hepatic arterial blood flow velocity in response to transarterial embolization in an in vivo porcine model. MATERIALS AND METHODS: Eight domestic swine underwent bland transarterial embolizations to partial- and sub-stasis angiographic endpoints with intraprocedural DSA acquisitions. Embolized lobes were assessed on histopathology for ischemic damage and tissue embolic particle density. Analysis of target vessels used qDSA and a commercially available color-coded DSA (ccDSA) tool to calculate blood flow velocities and time-to-peak, respectively. RESULTS: Blood flow velocities calculated using qDSA showed a statistically significant difference (p < 0.01) between partial- and sub-stasis endpoints, whereas time-to-peak calculated using ccDSA did not show a significant difference. During the course of embolizations, the average correlation with volume of particles delivered was larger for qDSA (- 0.86) than ccDSA (0.36). There was a statistically smaller mean squared error (p < 0.01) and larger coefficient of determination (p < 0.01) for qDSA compared to ccDSA. On pathology, the degree of embolization as calculated by qDSA had a moderate, positive correlation (p < 0.01) with the tissue embolic particle density of ischemic regions within the embolized lobe. CONCLUSIONS: qDSA was able to quantitatively discriminate angiographic embolization endpoints and, compared to a commercially available ccDSA method, improve intra-procedural characterization of blood flow changes. Additionally, the qDSA endpoints correlated with tissue-level changes.


Subject(s)
Angiography, Digital Subtraction/methods , Embolization, Therapeutic/methods , Hepatic Artery/diagnostic imaging , Hepatic Artery/physiopathology , Animals , Blood Flow Velocity/physiology , Evaluation Studies as Topic , Feasibility Studies , Swine
9.
Brain Plast ; 5(2): 175-184, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33282680

ABSTRACT

BACKGROUND: There is increasing evidence that vascular disease risk factors contribute to evolution of the dementia syndrome of Alzheimer's disease (AD). One important measure of cerebrovascular health is pulsatility index (PI) which is thought to represent distal vascular resistance, and has previously been reported to be elevated in AD clinical syndrome. Physical inactivity has emerged as an independent risk factor for cardiovascular disease. OBJECTIVE: This study aims to examine the relationship between a measure of habitual physical activity, cardiorespiratory fitness (CRF), and PI in the large cerebral vessels. METHODS: Ninety-two cognitively-healthy adults (age = 65.34±5.95, 72% female) enrolled in the Wisconsin Registry for Alzheimer's Prevention participated in this study. Participants underwent 4D flow brain MRI to measure PI in the internal carotid artery (ICA), basilar artery, middle cerebral artery (MCA), and superior sagittal sinus. Participants also completed a self-report physical activity questionnaire. CRF was calculated using a previously-validated equation that incorporates sex, age, body-mass index, resting heart rate, and self-reported physical activity. A series of linear regression models adjusted for age, sex, APOE4 status, and 10-year atherosclerotic cardiovascular disease risk were used to analyze the relationship between CRF and PI. RESULTS: Inverse associations were found between CRF and mean PI in the inferior ICA (p = .001), superior ICA (p = .035), and basilar artery (p = .040). No other cerebral vessels revealed significant associations between CRF and PI (p≥.228). CONCLUSIONS: Higher CRF was associated with lower PI in several large cerebral vessels. Since increased pulsatility has been associated with poor brain health and reported in persons with AD, this suggests that aerobic fitness might provide protection against cerebrovascular changes related to the progression of AD clinical syndrome.

10.
Eur Radiol Exp ; 4(1): 37, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32613472

ABSTRACT

BACKGROUND: Time-resolved three-dimensional digital subtraction angiography (4D-DSA) can be used to quantify blood velocity. Contrast pulsatility, a major discriminant on 4D-DSA, is yet to be optimized. We investigated the effects of different imaging and injection parameters on sideband ratio (SBR), a measure of contrast pulsatile strength, within the hepatic vasculature of an in vivo porcine model. METHODS: Fifty-nine hepatic 4D-DSA procedures were performed in three female domestic swine (mean weight 54 kg). Contrast injections were performed in the common hepatic artery with different combinations of imaging duration (6 s or 12 s), injection rates (from 1.0 to 2.5 mL/s), contrast concentration (50% or 100%), and catheter size (4 Fr or 5 Fr). Reflux was recorded. SBR and vessel cross-sectional areas were calculated in 289 arterial segments. Multiple linear mixed-effects models were estimated to determine the effects of parameters on SBR and cross-sectional vessel area. RESULTS: Twelve-second acquisitions yielded a SBR higher than 6 s (p < 0.001). No significant differences in SBR were seen between different catheter sizes (p = 0.063) or contrast concentration (p = 0.907). For higher injection rates (2.5 mL/s), SBR was lower (p = 0.007) and cross-sectional area was higher (p < 0.001). Reflux of contrast does not significantly affect SBR (p = 0.087). CONCLUSIONS: The strength of contrast pulsatility used for flow quantitation with 4D-DSA can be increased by adjusting injection rates and using longer acquisition times. Reduction of contrast concentration to 50% is feasible and reflux of contrast does not significantly hinder contrast pulsatility.


Subject(s)
Angiography, Digital Subtraction/methods , Hepatic Artery/diagnostic imaging , Imaging, Three-Dimensional/methods , Liver/blood supply , Animals , Contrast Media , Female , Pulsatile Flow , Swine
11.
Ann Biomed Eng ; 46(12): 2112-2122, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30112708

ABSTRACT

Four-dimensional (4D) Flow magnetic resonance imaging (MRI) enables the acquisition and assessment of complex hemodynamics in vivo from different vascular territories. This study investigated the viability of stereoscopic and tomographic particle image velocimetry (stereo- and tomo-PIV, respectively) as experimental validation techniques for 4D Flow MRI. The experiments were performed using continuous and pulsatile flows through an idealized carotid artery bifurcation model. Transverse and longitudinal planes were extracted from the acquired velocity data sets at different regions of interest and were analyzed with a point-by-point comparison. An overall root-mean-square error (RMSE) was calculated resulting in errors as low as 0.06 and 0.03 m/s when comparing 4D Flow MRI with stereo- and tomo-PIV, respectively. Quantitative agreement between techniques was determined by evaluating the relationship for individual velocity components and their magnitudes. These resulted in correlation coefficients (R2) of 4D Flow MRI with stereo- and tomo-PIV, as low as 0.76 and 0.73, respectively. The 3D velocity measurements from PIV showed qualitative agreement when compared to 4D Flow MRI, especially with tomo-PIV due to the addition of volumetric velocity measurements. These results suggest that tomo-PIV can be used as a validation technique for 4D Flow MRI, serving as the basis for future validation protocols.


Subject(s)
Carotid Arteries/diagnostic imaging , Carotid Arteries/physiology , Magnetic Resonance Imaging/methods , Models, Anatomic , Rheology/methods , Pulsatile Flow
12.
J Cereb Blood Flow Metab ; 36(10): 1718-1730, 2016 10.
Article in English | MEDLINE | ID: mdl-26661239

ABSTRACT

Cerebral blood flow, arterial pulsation, and vasomotion play important roles in the transport of waste metabolites out of the brain. Impaired vasomotion results in reduced driving force for the perivascular/glymphatic clearance of beta-amyloid. Noninvasive cerebrovascular characteristic features that potentially assess these transport mechanisms are mean blood flow (MBF) and pulsatility index (PI). In this study, 4D flow MRI was used to measure intra-cranial flow features, particularly MBF, PI, resistive index (RI) and cross-sectional area in patients with Alzheimer's disease (AD), mild cognitive impairment and in age matched and younger cognitively healthy controls. Three-hundred fourteen subjects participated in this study. Volumetric, time-resolved phase contrast (PC) MRI data were used to quantify hemodynamic parameters from 11 vessel segments. Anatomical variants of the Circle of Willis were also cataloged. The AD population reported a statistically significant decrease in MBF and cross-sectional area, and also an increase in PI and RI compared to age matched cognitively healthy control subjects. The 4D flow MRI technique used in this study provides quantitative measurements of intracranial vessel geometry and the velocity of flow. Cerebrovascular characteristics features of vascular health such as pulsatility index can be extracted from the 4D flow MRI data.


Subject(s)
Alzheimer Disease/diagnostic imaging , Cerebrovascular Circulation/physiology , Hemodynamics/physiology , Magnetic Resonance Imaging/methods , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Blood Flow Velocity/physiology , Case-Control Studies , Cerebral Arteries/diagnostic imaging , Cerebral Arteries/physiopathology , Cerebral Veins/diagnostic imaging , Cerebral Veins/physiopathology , Circle of Willis/diagnostic imaging , Circle of Willis/physiopathology , Humans , Middle Aged , Pulsatile Flow/physiology
13.
Magn Reson Imaging ; 34(4): 422-8, 2016 May.
Article in English | MEDLINE | ID: mdl-26708027

ABSTRACT

UNLABELLED: Non-invasive measurement of cerebral blood flow (CBF) in humans is fraught with technologic, anatomic, and accessibility issues, which has hindered multi-vessel hemodynamic analysis of the cranial vasculature. Recent developments in cardiovascular MRI have allowed for the measurement of cine velocity vector fields over large imaging volumes in a single acquisition with 4D flow MRI. The purpose of this study was to develop an imaging protocol to simultaneously measure pulsatile flow in the circle of Willis as well as the carotid and vertebrate arteries at rest and during increased CO2 (hypercapnia). METHODS: 8 healthy adults (3 women, 26±0.4years) completed this study. Heart rate (pulse oximetry), arterial oxygen saturation (pulse oximetry), blood pressure (MAP, sphygmomanometry), and end-tidal CO2 (capnograph) were measured at rest (baseline) and during hypercapnia. Hypercapnia was induced via breathing a mixed gas of 3% CO2 and 21% O2 (balance N2) in the MR magnet. CBF and vessel cross-sectional area were quantified in 11 arteries using a 4D flow MRI scan, lasting 5-6min with a radially undersampled acquisition and an isotropic spatial resolution of 0.7mm. RESULTS: Baseline total CBF was 665±54ml • min(-1). Hypercapnia increased total CBF 9±3% to 721±61ml • min(-1). Hypercapnic increases in CBF ranged from 7 to 36% by artery, with the largest increases in the left anterior cerebral artery. Increases in artery cross-sectional area were observed in basilar and vertebral arteries. CONCLUSION: 4D flow MRI methods are sensitive enough to detect non-uniform changes in CBF and cross-sectional area to a mild yet clinically relevant CO2 stimulus. 4D flow MRI is a non-invasive reliable tool providing high spatio-temporal resolution in clinically feasible scan times without contrast agent. This approach can be used to interrogate regional cerebrovascular control in health and disease.


Subject(s)
Cerebrovascular Circulation/physiology , Hypercapnia/diagnostic imaging , Magnetic Resonance Imaging , Adult , Carbon Dioxide/blood , Carotid Arteries/diagnostic imaging , Circle of Willis/diagnostic imaging , Female , Humans , Image Processing, Computer-Assisted , Male , Oximetry , Oxygen/blood , Pulsatile Flow , Rest , Vertebral Artery/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...