Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 919
Filter
1.
Methods ; 229: 9-16, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838947

ABSTRACT

Robust segmentation of large and complex conjoined tree structures in 3-D is a major challenge in computer vision. This is particularly true in computational biology, where we often encounter large data structures in size, but few in number, which poses a hard problem for learning algorithms. We show that merging multiscale opening with geodesic path propagation, can shed new light on this classic machine vision challenge, while circumventing the learning issue by developing an unsupervised visual geometry approach (digital topology/morphometry). The novelty of the proposed MSO-GP method comes from the geodesic path propagation being guided by a skeletonization of the conjoined structure that helps to achieve robust segmentation results in a particularly challenging task in this area, that of artery-vein separation from non-contrast pulmonary computed tomography angiograms. This is an important first step in measuring vascular geometry to then diagnose pulmonary diseases and to develop image-based phenotypes. We first present proof-of-concept results on synthetic data, and then verify the performance on pig lung and human lung data with less segmentation time and user intervention needs than those of the competing methods.

2.
Article in English | MEDLINE | ID: mdl-38843116

ABSTRACT

RATIONAL: Ground glass opacities (GGO) in the absence of interstitial lung disease are understudied. OBJECTIVE: To assess the association of GGO with white blood cells (WBCs) and progression of quantified chest CT emphysema. METHODS: We analyzed data of participants in the Subpopulations and Intermediate Outcome Measures In COPD Study (SPIROMICS). Chest radiologists and pulmonologists labeled regions of the lung as GGO and adaptive multiple feature method (AMFM) trained the computer to assign those labels to image voxels and quantify the volume of the lung with GGO (%GGOAMFM). We used multivariable linear regression, zero-inflated negative binomial, and proportional hazards regression models to assess the association of %GGOAMFM with WBC, changes in %emphysema, and clinical outcomes. MEASUREMENTS AND MAIN RESULTS: Among 2,714 participants, 1,680 had COPD and 1,034 had normal spirometry. Among COPD participants, based on the multivariable analysis, current smoking and chronic productive cough was associated with higher %GGOAMFM. Higher %GGOAMFM was cross-sectionally associated with higher WBCs and neutrophils levels. Higher %GGOAMFM per interquartile range at visit 1 (baseline) was associated with an increase in emphysema at one-year follow visit by 11.7% (Relative increase; 95%CI 7.5-16.1%;P<0.001). We found no association between %GGOAMFM and one-year FEV1 decline but %GGOAMFM was associated with exacerbations and all-cause mortality during a median follow-up time of 1,544 days (Interquartile Interval=1,118-2,059). Among normal spirometry participants, we found similar results except that %GGOAMFM was associated with progression to COPD at one-year follow-up. CONCLUSIONS: Our findings suggest that GGOAMFM is associated with increased systemic inflammation and emphysema progression.

3.
Heredity (Edinb) ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802598

ABSTRACT

When a population is isolated and composed of few individuals, genetic drift is the paramount evolutionary force and results in the loss of genetic diversity. Inbreeding might also occur, resulting in genomic regions that are identical by descent, manifesting as runs of homozygosity (ROHs) and the expression of recessive traits. Likewise, the genes underlying traits of interest can be revealed by comparing fixed SNPs and divergent haplotypes between affected and unaffected individuals. Populations of white-tailed deer (Odocoileus virginianus) on islands of Saint Pierre and Miquelon (SPM, France) have high incidences of leucism and malocclusions, both considered genetic defects; on the Florida Keys islands (USA) deer exhibit smaller body sizes, a polygenic trait. Here we aimed to reconstruct island demography and identify the genes associated with these traits in a pseudo case-control design. The two island populations showed reduced levels of genomic diversity and a build-up of deleterious mutations compared to mainland deer; there was also significant genome-wide divergence in Key deer. Key deer showed higher inbreeding levels, but not longer ROHs, consistent with long-term isolation. We identified multiple trait-related genes in ROHs including LAMTOR2 which has links to pigmentation changes, and NPVF which is linked to craniofacial abnormalities. Our mixed approach of linking ROHs, fixed SNPs and haplotypes matched a high number (~50) of a-priori body size candidate genes in Key deer. This suite of biomarkers and candidate genes should prove useful for population monitoring, noting all three phenotypes show patterns consistent with a complex trait and non-Mendelian inheritance.

5.
Med Phys ; 51(6): 4201-4218, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38721977

ABSTRACT

BACKGROUND: Spinal degeneration and vertebral compression fractures are common among the elderly that adversely affect their mobility, quality of life, lung function, and mortality. Assessment of vertebral fractures in chronic obstructive pulmonary disease (COPD) is important due to the high prevalence of osteoporosis and associated vertebral fractures in COPD. PURPOSE: We present new automated methods for (1) segmentation and labelling of individual vertebrae in chest computed tomography (CT) images using deep learning (DL), multi-parametric freeze-and-grow (FG) algorithm, and separation of apparently fused vertebrae using intensity autocorrelation and (2) vertebral deformity fracture detection using computed vertebral height features and parametric computational modelling of an established protocol outlined for trained human experts. METHODS: A chest CT-based automated method was developed for quantitative deformity fracture assessment following the protocol by Genant et al. The computational method was accomplished in the following steps: (1) computation of a voxel-level vertebral body likelihood map from chest CT using a trained DL network; (2) delineation and labelling of individual vertebrae on the likelihood map using an iterative multi-parametric FG algorithm; (3) separation of apparently fused vertebrae in CT using intensity autocorrelation; (4) computation of vertebral heights using contour analysis on the central anterior-posterior (AP) plane of a vertebral body; (5) assessment of vertebral fracture status using ratio functions of vertebral heights and optimized thresholds. The method was applied to inspiratory or total lung capacity (TLC) chest scans from the multi-site Genetic Epidemiology of COPD (COPDGene) (ClinicalTrials.gov: NCT00608764) study, and the performance was examined (n = 3231). One hundred and twenty scans randomly selected from this dataset were partitioned into training (n = 80) and validation (n = 40) datasets for the DL-based vertebral body classifier. Also, generalizability of the method to low dose CT imaging (n = 236) was evaluated. RESULTS: The vertebral segmentation module achieved a Dice score of .984 as compared to manual outlining results as reference (n = 100); the segmentation performance was consistent across images with the minimum and maximum of Dice scores among images being .980 and .989, respectively. The vertebral labelling module achieved 100% accuracy (n = 100). For low dose CT, the segmentation module produced image-level minimum and maximum Dice scores of .995 and .999, respectively, as compared to standard dose CT as the reference; vertebral labelling at low dose CT was fully consistent with standard dose CT (n = 236). The fracture assessment method achieved overall accuracy, sensitivity, and specificity of 98.3%, 94.8%, and 98.5%, respectively, for 40,050 vertebrae from 3231 COPDGene participants. For generalizability experiments, fracture assessment from low dose CT was consistent with the reference standard dose CT results across all participants. CONCLUSIONS: Our CT-based automated method for vertebral fracture assessment is accurate, and it offers a feasible alternative to manual expert reading, especially for large population-based studies, where automation is important for high efficiency. Generalizability of the method to low dose CT imaging further extends the scope of application of the method, particularly since the usage of low dose CT imaging in large population-based studies has increased to reduce cumulative radiation exposure.


Subject(s)
Image Processing, Computer-Assisted , Spinal Fractures , Tomography, X-Ray Computed , Spinal Fractures/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods , Artificial Intelligence , Automation , Radiography, Thoracic , Deep Learning , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Aged
6.
Neurobiol Dis ; 196: 106522, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38705492

ABSTRACT

Idiopathic Parkinson's disease (PD) is epidemiologically linked with exposure to toxicants such as pesticides and solvents, which comprise a wide array of chemicals that pollute our environment. While most are structurally distinct, a common cellular target for their toxicity is mitochondrial dysfunction, a key pathological trigger involved in the selective vulnerability of dopaminergic neurons. We and others have shown that environmental mitochondrial toxicants such as the pesticides rotenone and paraquat, and the organic solvent trichloroethylene (TCE) appear to be influenced by the protein LRRK2, a genetic risk factor for PD. As LRRK2 mediates vesicular trafficking and influences endolysosomal function, we postulated that LRRK2 kinase activity may inhibit the autophagic removal of toxicant damaged mitochondria, resulting in elevated oxidative stress. Conversely, we suspected that inhibition of LRRK2, which has been shown to be protective against dopaminergic neurodegeneration caused by mitochondrial toxicants, would reduce the intracellular production of reactive oxygen species (ROS) and prevent mitochondrial toxicity from inducing cell death. To do this, we tested in vitro if genetic or pharmacologic inhibition of LRRK2 (MLi2) protected against ROS caused by four toxicants associated with PD risk - rotenone, paraquat, TCE, and tetrachloroethylene (PERC). In parallel, we assessed if LRRK2 inhibition with MLi2 could protect against TCE-induced toxicity in vivo, in a follow up study from our observation that TCE elevated LRRK2 kinase activity in the nigrostriatal tract of rats prior to dopaminergic neurodegeneration. We found that LRRK2 inhibition blocked toxicant-induced ROS and promoted mitophagy in vitro, and protected against dopaminergic neurodegeneration, neuroinflammation, and mitochondrial damage caused by TCE in vivo. We also found that cells with the LRRK2 G2019S mutation displayed exacerbated levels of toxicant induced ROS, but this was ameliorated by LRRK2 inhibition with MLi2. Collectively, these data support a role for LRRK2 in toxicant-induced mitochondrial dysfunction linked to PD risk through oxidative stress and the autophagic removal of damaged mitochondria.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Reactive Oxygen Species , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Animals , Reactive Oxygen Species/metabolism , Rats , Trichloroethylene/toxicity , Mitochondria/drug effects , Mitochondria/metabolism , Rotenone/toxicity , Parkinson Disease/metabolism , Parkinson Disease/prevention & control , Paraquat/toxicity , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Oxidative Stress/drug effects , Humans , Environmental Pollutants/toxicity , Rats, Sprague-Dawley
7.
medRxiv ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38645219

ABSTRACT

Background: The objective of this study is to understand chronic obstructive pulmonary disease (COPD) phenotypes and their progressions by quantifying heterogeneities of lung ventilation from the single photon emission computed tomography (SPECT) images and establishing associations with the quantitative computed tomography (qCT) imaging-based clusters and variables. Methods: Eight COPD patients completed a longitudinal study of three visits with intervals of about a year. CT scans of these subjects at residual volume, functional residual capacity, and total lung capacity were taken for all visits. The functional and structural qCT-based variables were derived, and the subjects were classified into the qCT-based clusters. In addition, the SPECT variables were derived to quantify the heterogeneity of lung ventilation. The correlations between the key qCT-based variables and SPECT-based variables were examined. Results: The SPECT-based coefficient of variation (CVTotal), a measure of ventilation heterogeneity, showed strong correlations (|r| ≥ 0.7) with the qCT-based functional small airway disease percentage (fSAD%Total) and emphysematous tissue percentage (Emph%Total) in the total lung on cross-sectional data. As for the two-year changes, the SPECT-based maximum tracer concentration (TCmax), a measure of hot spots, exhibited strong negative correlations with fSAD%Total, Emph%Total, average airway diameter in the left upper lobe, and airflow distribution in the middle and lower lobes. Conclusion: Small airway disease is highly associated with the heterogeneity of ventilation in COPD lungs. TCmax is a more sensitive functional biomarker for COPD progression than CVTotal. Besides fSAD%Total and Emph%Total, segmental airways narrowing and imbalanced ventilation between upper and lower lobes may contribute to the development of hot spots over time.

8.
J Clin Pharmacol ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682893

ABSTRACT

Human genetic variation (polymorphisms) in genes coding proteins involved in the absorption, distribution, metabolism, and elimination (ADME) of drugs can have a strong effect on drug exposure and downstream efficacy and safety outcomes. Vamorolone, a dissociative steroidal anti-inflammatory drug for treating Duchenne muscular dystrophy (DMD), primarily undergoes oxidation by CYP3A4 and CYP3A5 and glucuronidation by UDP-glucuronosyltransferases. This work assesses the pharmacokinetics (PKs) of vamorolone and sources of interindividual variability (IIV) in 81 steroid-naïve boys with DMD aged 4 to <7 years old considering the genetic polymorphisms of CYPS3A4 (CYP3A4*22, CYP3A4*1B), CYP3A5 (CYP3A5*3), and UGT1A1 (UGT1A1*60) utilizing population PK modeling. A one-compartment model with zero-order absorption (Tk0, duration of absorption), linear clearance (CL/F), and volume (V/F) describes the plasma PK data for boys with DMD receiving a wide range of vamorolone doses (0.25-6 mg/kg/day). The typical CL/F and V/F values of vamorolone were 35.8 L/h and 119 L, with modest IIV. The population Tk0 was 3.14 h yielding an average zero-order absorption rate (k0) of 1.16 mg/kg/h with similar absorption kinetics across subjects at the same vamorolone dose (i.e., no IIV on Tk0). The covariate analysis showed that none of the genetic covariates had any significant impact on the PKs of vamorolone in boys with DMD. Thus, the PKs of vamorolone is very consistent in these young boys with DMD.

9.
Ann Am Thorac Soc ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568439

ABSTRACT

RATIONALE: It is unknown whether air pollution is associated with radiographic features of interstitial lung disease in individuals with chronic obstructive pulmonary disease (COPD). OBJECTIVES: To determine whether air pollution increases prevalence of interstitial lung abnormalities (ILA) or percent high-attenuation area (HAA) on computed tomography (CT) in individuals with a heavy smoking history and COPD. METHODS: We performed a cross-sectional study of SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study), focused on current or former smokers with COPD. 10-year exposure to particulate matter < 2.5 µm (PM2.5), nitrogen oxides (NOx), nitrogen dioxide (NO2), and ozone (O3) prior to enrollment CTs (completed between 2010-2015) were estimated with validated spatiotemporal models at residential addresses. We applied adjusted multivariable modified Poisson regression and linear regression to investigate associations between pollution exposure and relative risk of ILA or increased percent HAA (between -600 and -250 Hounsfield units) respectively. We assessed for effect modification by MUC5B-promoter polymorphism (GT/TT vs GG at rs3705950), smoking status, sex, and percent emphysema. RESULTS: Among 1272 participants with COPD assessed for HAA, 424 were current smokers, 249 were carriers of the variant MUC5B allele (GT/TT). 519 participants were assessed for ILA. We found no association between pollution exposure and ILA or HAA. Associations between pollutant exposures and risk of ILA were modified by the presence of MUC5B polymorphism (p-value interaction term for NOx = 0.04 and PM2.5 = 0.05) and smoking status (p-value interaction term for NOx = 0.05, NO2 = 0.01, and O3 = 0.05). With higher exposure to NOx and PM2.5, MUC5B variant carriers had increased risk of ILA (Relative Risk [RR] per 26ppb NOx 2.41; 95% Confidence Interval [CI] 0.97 to 6.0) and RR per 4 µg·m-3 PM2.5 1.43; 95% CI 0.93 to 2.2). With higher exposure to NO2, former smokers had increased risk of ILA (RR per 10ppb 1.64; 95% CI 1.0 to 2.7). CONCLUSIONS: Exposure to ambient air pollution was not associated with interstitial features on CT in this population of heavy smokers with COPD. MUC5B modified the association between pollution and ILA, suggesting that gene-environment interactions may influence prevalence of interstitial lung features in COPD.

11.
Thorax ; 79(5): 472-475, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38514184

ABSTRACT

We conducted a prospective single-centre cohort study of 104 multi-ethnic severe COVID-19 survivors from the first wave of the pandemic 15 months after hospitalisation. Of those who were assessed at 4 and 15 months, improvement of ground glass opacities correlated with worsened fibrotic reticulations. Despite a high prevalence of fibrotic patterns (64%), pulmonary function, grip strength, 6 min walk distance and frailty normalised. Overall, dyspnoea, cough and exhaustion did not improve and were not correlated with pulmonary function or radiographic fibrosis at 15 months, suggesting non-respiratory aetiologies. Monitoring persistent, and often subclinical, fibrotic interstitial abnormalities will be needed to determine their potential for future progression.


Subject(s)
COVID-19 , Pulmonary Fibrosis , Humans , Pulmonary Fibrosis/diagnostic imaging , Pulmonary Fibrosis/etiology , Exercise Tolerance , Prospective Studies , Cohort Studies
12.
BMJ Open ; 14(3): e080097, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521535

ABSTRACT

OBJECTIVES: Public access databases such as clinicaltrials.gov achieve dissemination of clinical trial design and aggregated study results. However, return of participant-level data is rarely done. A key barrier includes the proprietary ownership of data by the sponsor. Additionally, investigators may not have access to centralised data, and per International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) Good Clinical Practice, must maintain the confidentiality of participants. This study piloted an approach to return both individual and aggregate clinical trial data to parents of children participating in a series of open-label clinical trials. SETTING AND DESIGN: A small biotech company obtained central ethics approval (centralised institutional review board [IRB], non-exempt). The study was advertised via parent advocacy groups. Parents of trial participants were offered the option to contact an employee (coordinator) within the company, requesting return of their child's study results. Ethics approval covered participation in six countries. The study focused on the sequential clinical trials of vamorolone VBP15-002 (NCT02760264) and VBP15-003 (NCT02760277) (post-results). INTERVENTIONS: Contact initiated by the parent enabled the coordinator to obtain informed consent (and separate General Data Protection Regulations consent), with phone translation when needed. Using date of birth and study site location provided by the parent, the data manager reported the participant number to the coordinator. The coordinator retrieved and compiled data, along with an aggregate summary, which was mailed via a password protected and encrypted memory device to the parent. Prereturn and postreturn surveys were sent to consented parents (n=19; 40% of 48 total trial participants) and investigators. RESULTS: Prereturn surveys indicated a request for as much data as offered, in all formats offered. Postreturn survey showed high satisfaction with the process and data returned. Survey of the physician site investigators (n=10; 100% participation of investigators) voiced general satisfaction with the process, with some reservations. CONCLUSIONS: This pilot study demonstrates an innovative, cost-effective, centralised and labour conservative approach to return of participant-level and aggregate data to participants in studies.


Subject(s)
Informed Consent , Child , Humans , Pilot Projects , Surveys and Questionnaires , Clinical Trials as Topic
13.
Article in English | MEDLINE | ID: mdl-38507607

ABSTRACT

RATIONALE: Individuals with COPD have airflow obstruction and maldistribution of ventilation. For those living at high altitude, any gas exchange abnormality is compounded by reduced partial pressures of inspired oxygen. OBJECTIVES: Does residence at higher-altitude exposure affect COPD outcomes, including lung function, imaging characteristics, symptoms, health status, functional exercise capacity, exacerbations, or mortality? METHODS: From the SPIROMICS cohort, we identified individuals with COPD living below 1,000 ft (305 m) elevation (n= 1,367) versus above 4,000 ft (1,219 m) elevation (n= 288). Multivariable regression models were used to evaluate associations of exposure to high altitude with COPD-related outcomes. MEASUREMENTS AND MAIN RESULTS: Living at higher altitude was associated with reduced functional exercise capacity as defined by 6MWD (-32.3 m, (-55.7 to -28.6)). There were no differences in patient-reported outcomes as defined by symptoms (CAT, mMRC), or health status (SGRQ). Higher altitude was not associated with a different rate of FEV1 decline. Higher altitude was associated with lower odds of severe exacerbations (IRR 0.65, (0.46 to 0.90)). There were no differences in small airway disease, air trapping, or emphysema. In longitudinal analyses, higher altitude was associated with increased mortality (HR 1.25, (1.0 to 1.55)); however, this association was no longer significant when accounting for air pollution. CONCLUSIONS: Chronic altitude exposure is associated with reduced functional exercise capacity in individuals with COPD, but this did not translate into differences in symptoms or health status. Additionally, chronic high-altitude exposure did not affect progression of disease as defined by longitudinal changes in spirometry.

14.
Ann Am Thorac Soc ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530051

ABSTRACT

Rationale: Rates of emphysema progression vary in chronic obstructive pulmonary disease (COPD), and the relationship with vascular and airway pathophysiology remain unclear. Objective: We sought to determine if indices of peripheral (segmental and beyond) pulmonary arterial (PA) dilation measured via computed tomography (CT) are associated with a 1-year index of emphysema (EI: %voxels<-950HU) progression. Methods: 599 GOLD 0-3 former and never-smokers were evaluated from the SubPopulations and InterMediate Outcome Measures in COPD Study (SPIROMICS) cohort: rapid-emphysema-progressors (RP, n=188; 1-year ΔEI>1%), non-progressors (NP, n=301; 1-year ΔEI±0.5%) and never-smokers (NS: N=110). Segmental PA cross-sectional areas were standardized to associated airway luminal areas (Segmental : Pulmonary Artery-to-Airway Ratio: PAARseg). Full inspiratory CT scan-derived total (arteries + veins) pulmonary vascular volume (TPVV) was compared to vessel volume with radius smaller than 0.75mm (SVV.75/TPVV). Airway-to-lung ratios (an index of dysanapsis and COPD risk) were compared to TPVV-lung-volume-ratios. Results: Compared with NP, RP exhibited significantly larger PAARseg (0.73±0.29 vs. 0.67±0.23; p=0.001), lower TPVV-to-lung-volume ratio (3.21%±0.42% vs. 3.48%±0.38%; p=5.0 x 10-12), lower airway-to-lung-volume ratio (0.031±0.003 vs. 0.034±0.004; p=6.1 x 10-13) and larger SVV.75/TPVV (37.91%±4.26% vs. 35.53±4.89; p=1.9 x 10-7). In adjusted analyses, a 1-SD increment in PAARseg was associated with a 98.4% higher rate of severe exacerbations (95%CI: 29 to 206%; p = 0.002) and 79.3% higher in odds of being in the rapid emphysema progression group (95%CI: 24% to 157%; p = 0.001). At year-2 followup, the CT-defined RP group demonstrated a significant decline in post-bronchodilator-FEV1% predicted. Conclusion: Rapid one-year progression of emphysema was associated with indices indicative of higher peripheral pulmonary vascular resistance and a possible role played by pulmonary vascular-airway dysanapsis.

15.
Neurology ; 102(5): e208112, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38335499

ABSTRACT

BACKGROUND AND OBJECTIVES: Vamorolone is a dissociative agonist of the glucocorticoid receptor that has shown similar efficacy and reduced safety concerns in comparison with prednisone in Duchenne muscular dystrophy (DMD). This study was conducted to determine the efficacy and safety of vamorolone over 48 weeks and to study crossover participants (prednisone to vamorolone; placebo to vamorolone). METHODS: A randomized, double-blind, placebo-controlled and prednisone-controlled clinical trial of 2 doses of vamorolone was conducted in participants with DMD, in the ages from 4 years to younger than 7 years at baseline. The interventions were 2 mg/kg/d of vamorolone and 6 mg/kg/d of vamorolone for 48 weeks (period 1: 24 weeks + period 2: 24 weeks) and 0.75 mg/kg/d of prednisone and placebo for the first 24 weeks (before crossover). Efficacy was evaluated through gross motor outcomes and safety through adverse events, growth velocity, body mass index (BMI), and bone turnover biomarkers. This analysis focused on period 2. RESULTS: A total of 121 participants with DMD were randomized. Vamorolone at a dose of 6 mg/kg/d showed maintenance of improvement for all motor outcomes to week 48 (e.g., for primary outcome, time to stand from supine [TTSTAND] velocity, week 24 least squares mean [LSM] [SE] 0.052 [0.0130] rises/s vs week 48 LSM [SE] 0.0446 [0.0138]). After 48 weeks, vamorolone at a dose of 2 mg/kg/d showed similar improvements as 6 mg/kg/d for North Star Ambulatory Assessment (NSAA) (vamorolone 6 mg/kg/d-vamorolone 2 mg/kg/d LSM [SE] 0.49 [1.14]; 95% CI -1.80 to 2.78, p = 0.67), but less improvement for other motor outcomes. The placebo to vamorolone 6 mg/kg/d group showed rapid improvements after 20 weeks of treatment approaching benefit seen with 48-week 6 mg/kg/d of vamorolone treatment for TTSTAND, time to run/walk 10 m, and NSAA. There was significant improvement in linear growth after crossover in the prednisone to vamorolone 6 mg/kg/d group, and rapid reversal of prednisone-induced decline in bone turnover biomarkers in both crossover groups. There was an increase in BMI after 24 weeks of treatment that then stabilized for both vamorolone groups. DISCUSSION: Improvements of motor outcomes seen with 6 mg/kg/d of vamorolone at 24 weeks of treatment were maintained to 48 weeks of treatment. Vamorolone at a dose of 6 mg/kg/d showed better maintenance of effect compared with vamorolone at a dose of 2 mg/kg/d for most (3/5) motor outcomes. Bone morbidities of prednisone (stunting of growth and declines in serum bone biomarkers) were reversed when treatment transitioned to vamorolone. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier: NCT03439670. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that for boys with DMD, the efficacy of vamorolone at a dose of 6 mg/kg/d was maintained over 48 weeks.


Subject(s)
Muscular Dystrophy, Duchenne , Pregnadienediols , Humans , Male , Biomarkers , Muscular Dystrophy, Duchenne/drug therapy , Prednisone/adverse effects , Pregnadienediols/adverse effects , Child, Preschool , Child
16.
Eur J Pharm Sci ; 195: 106724, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38340875

ABSTRACT

BACKGROUND: Recent studies, based on clinical data, have identified sex and age as significant factors associated with an increased risk of long COVID. These two factors align with the two post-COVID-19 clusters identified by a deep learning algorithm in computed tomography (CT) lung scans: Cluster 1 (C1), comprising predominantly females with small airway diseases, and Cluster 2 (C2), characterized by older individuals with fibrotic-like patterns. This study aims to assess the distributions of inhaled aerosols in these clusters. METHODS: 140 COVID survivors examined around 112 days post-diagnosis, along with 105 uninfected, non-smoking healthy controls, were studied. Their demographic data and CT scans at full inspiration and expiration were analyzed using a combined imaging and modeling approach. A subject-specific CT-based computational model analysis was utilized to predict airway resistance and particle deposition among C1 and C2 subjects. The cluster-specific structure and function relationships were explored. RESULTS: In C1 subjects, distinctive features included airway narrowing, a reduced homothety ratio of daughter over parent branch diameter, and increased airway resistance. Airway resistance was concentrated in the distal region, with a higher fraction of particle deposition in the proximal airways. On the other hand, C2 subjects exhibited airway dilation, an increased homothety ratio, reduced airway resistance, and a shift of resistance concentration towards the proximal region, allowing for deeper particle penetration into the lungs. CONCLUSIONS: This study revealed unique mechanistic phenotypes of airway resistance and particle deposition in the two post-COVID-19 clusters. The implications of these findings for inhaled drug delivery effectiveness and susceptibility to air pollutants were explored.


Subject(s)
Asthma , COVID-19 , Female , Humans , Male , Post-Acute COVID-19 Syndrome , Respiratory Aerosols and Droplets , Lung/diagnostic imaging , Asthma/drug therapy , Administration, Inhalation , Particle Size
17.
J Neuromuscul Dis ; 11(2): 285-297, 2024.
Article in English | MEDLINE | ID: mdl-38363615

ABSTRACT

Background: Dilated cardiomyopathy (DCM) is a major complication of, and leading cause of mortality in Duchenne muscular dystrophy (DMD). Its severity, age at onset, and rate of progression display wide variability, whose molecular bases have been scarcely elucidated. Potential DCM-modifying factors include glucocorticoid (GC) and cardiological treatments, DMD mutation type and location, and variants in other genes. Methods and Results: We retrospectively collected 3138 echocardiographic measurements of left ventricular ejection fraction (EF), shortening fraction (SF), and end-diastolic volume (EDV) from 819 DMD participants, 541 from an Italian multicentric cohort and 278 from the Cooperative International Neuromuscular Group Duchenne Natural History Study (CINRG-DNHS). Using generalized estimating equation (GEE) models, we estimated the yearly rate of decrease of EF (-0.80%) and SF (-0.41%), while EDV increase was not significantly associated with age. Utilizing a multivariate generalized estimating equation (GEE) model we observed that mutations preserving the expression of the C-terminal Dp71 isoform of dystrophin were correlated with decreased EDV (-11.01 mL/m2, p = 0.03) while for dp116 were correlated with decreased EF (-4.14%, p = <0.001). The rs10880 genotype in the LTBP4 gene, previously shown to prolong ambulation, was also associated with increased EF and decreased EDV (+3.29%, p = 0.002, and -10.62 mL/m2, p = 0.008) with a recessive model. Conclusions: We quantitatively describe the progression of systolic dysfunction progression in DMD, confirm the effect of distal dystrophin isoform expression on the dystrophin-deficient heart, and identify a strong effect of LTBP4 genotype of DCM in DMD.


Subject(s)
Cardiomyopathies , Muscular Dystrophy, Duchenne , Humans , Dystrophin/genetics , Dystrophin/metabolism , Haplotypes , Retrospective Studies , Stroke Volume , Ventricular Function, Left , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/complications , Cardiomyopathies/etiology , Cardiomyopathies/genetics , Protein Isoforms/genetics , Latent TGF-beta Binding Proteins/genetics
18.
Disabil Health J ; : 101589, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38341354

ABSTRACT

BACKGROUND: Care managers (CM) for low-income disabled clients may address COVID-19 vaccine hesitancy with specific training. OBJECTIVE: To assess the Partners in Vaccination (PIV) that trained CMs of a homecare program for disabled adults to promote COVID-19 vaccination. METHODS: We randomized 78 CMs to PIV intervention (N = 38) or control (N = 40). PIV featured motivational interviewing (MI) skills and educational materials for unvaccinated clients. The primary outcome was first COVID-19 vaccination between December 1, 2021 and June 30, 2022 for clients of intervention CMs versus control CMs. Mixed method analysis included key informant interviews conducted from 5/24/22 to 7/25/22 with CMs, administrators, and clients about the PIV intervention. RESULTS: Among 1939 clients of 78 study CMs, 528 (26.8 %) were unvaccinated by December 1, 2021 (274 clients of intervention CMs; 254 clients of control CMs). These clients' mean age was 62.3 years old (SD = 22.4) and 54 % were Black or Hispanic/Latino. First vaccination rate did not differ for intervention and control groups (6.2 % vs. 5.9 %, p = .89) by 6/30/2022. Barriers to addressing COVID-19 vaccination from interviews with 7 CMs and administrators were competing responsibilities and potentially antagonizing clients. Seven interviewed clients (five vaccinated and two unvaccinated) cited concerns about vaccination they heard from their family/friends and belief that risks of COVID-19 infection may be less than vaccination. Yet, some clients were receptive to physician recommendations. CONCLUSION: Training CMs to promote COVID-19 vaccination for disabled clients did not increase first vaccination rates. CMs preferred their usual role of coordinating care and, even after the training, expressed discomfort with this potentially polarizing topic.

19.
IEEE Trans Med Imaging ; PP2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38373126

ABSTRACT

Chest computed tomography (CT) at inspiration is often complemented by an expiratory CT to identify peripheral airways disease. Additionally, co-registered inspiratory-expiratory volumes can be used to derive various markers of lung function. Expiratory CT scans, however, may not be acquired due to dose or scan time considerations or may be inadequate due to motion or insufficient exhale; leading to a missed opportunity to evaluate underlying small airways disease. Here, we propose LungViT - a generative adversarial learning approach using hierarchical vision transformers for translating inspiratory CT intensities to corresponding expiratory CT intensities. LungViT addresses several limitations of the traditional generative models including slicewise discontinuities, limited size of generated volumes, and their inability to model texture transfer at volumetric level. We propose a shifted-window hierarchical vision transformer architecture with squeeze-and-excitation decoder blocks for modeling dependencies between features. We also propose a multiview texture similarity distance metric for texture and style transfer in 3D. To incorporate global information into the training process and refine the output of our model, we use ensemble cascading. LungViT is able to generate large 3D volumes of size 320 × 320 × 320. We train and validate our model using a diverse cohort of 1500 subjects with varying disease severity. To assess model generalizability beyond the development set biases, we evaluate our model on an out-of-distribution external validation set of 200 subjects. Clinical validation on internal and external testing sets shows that synthetic volumes could be reliably adopted for deriving clinical endpoints of chronic obstructive pulmonary disease.

20.
Ann Am Thorac Soc ; 21(6): 884-894, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38335160

ABSTRACT

Rationale: Chronic obstructive pulmonary disease (COPD) and emphysema are associated with endothelial damage and altered pulmonary microvascular perfusion. The molecular mechanisms underlying these changes are poorly understood in patients, in part because of the inaccessibility of the pulmonary vasculature. Peripheral blood mononuclear cells (PBMCs) interact with the pulmonary endothelium. Objectives: To test the association between gene expression in PBMCs and pulmonary microvascular perfusion in COPD. Methods: The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study recruited two independent samples of COPD cases and controls with ⩾10 pack-years of smoking history. In both samples, pulmonary microvascular blood flow, pulmonary microvascular blood volume, and mean transit time were assessed on contrast-enhanced magnetic resonance imaging, and PBMC gene expression was assessed by microarray. Additional replication was performed in a third sample with pulmonary microvascular blood volume measures on contrast-enhanced dual-energy computed tomography. Differential expression analyses were adjusted for age, gender, race/ethnicity, educational attainment, height, weight, smoking status, and pack-years of smoking. Results: The 79 participants in the discovery sample had a mean age of 69 ± 6 years, 44% were female, 25% were non-White, 34% were current smokers, and 66% had COPD. There were large PBMC gene expression signatures associated with pulmonary microvascular perfusion traits, with several replicated in the replication sets with magnetic resonance imaging (n = 47) or dual-energy contrast-enhanced computed tomography (n = 157) measures. Many of the identified genes are involved in inflammatory processes, including nuclear factor-κB and chemokine signaling pathways. Conclusions: PBMC gene expression in nuclear factor-κB, inflammatory, and chemokine signaling pathways was associated with pulmonary microvascular perfusion in COPD, potentially offering new targetable candidates for novel therapies.


Subject(s)
Leukocytes, Mononuclear , Magnetic Resonance Imaging , Pulmonary Disease, Chronic Obstructive , Humans , Female , Male , Aged , Leukocytes, Mononuclear/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/physiopathology , Middle Aged , Lung/blood supply , Lung/diagnostic imaging , Lung/metabolism , Atherosclerosis/genetics , Atherosclerosis/ethnology , Case-Control Studies , United States/epidemiology , Aged, 80 and over , Gene Expression , Tomography, X-Ray Computed , Pulmonary Circulation , Smoking , Microcirculation
SELECTION OF CITATIONS
SEARCH DETAIL
...