Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
RNA Biol ; 21(1): 1-23, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38629491

ABSTRACT

Translation fidelity relies on accurate aminoacylation of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases (AARSs). AARSs specific for alanine (Ala), leucine (Leu), serine, and pyrrolysine do not recognize the anticodon bases. Single nucleotide anticodon variants in their cognate tRNAs can lead to mistranslation. Human genomes include both rare and more common mistranslating tRNA variants. We investigated three rare human tRNALeu variants that mis-incorporate Leu at phenylalanine or tryptophan codons. Expression of each tRNALeu anticodon variant in neuroblastoma cells caused defects in fluorescent protein production without significantly increased cytotoxicity under normal conditions or in the context of proteasome inhibition. Using tRNA sequencing and mass spectrometry we confirmed that each tRNALeu variant was expressed and generated mistranslation with Leu. To probe the flexibility of the entire genetic code towards Leu mis-incorporation, we created 64 yeast strains to express all possible tRNALeu anticodon variants in a doxycycline-inducible system. While some variants showed mild or no growth defects, many anticodon variants, enriched with G/C at positions 35 and 36, including those replacing Leu for proline, arginine, alanine, or glycine, caused dramatic reductions in growth. Differential phenotypic defects were observed for tRNALeu mutants with synonymous anticodons and for different tRNALeu isoacceptors with the same anticodon. A comparison to tRNAAla anticodon variants demonstrates that Ala mis-incorporation is more tolerable than Leu at nearly every codon. The data show that the nature of the amino acid substitution, the tRNA gene, and the anticodon are each important factors that influence the ability of cells to tolerate mistranslating tRNAs.


Subject(s)
Amino Acyl-tRNA Synthetases , Saccharomyces cerevisiae , Animals , Humans , Saccharomyces cerevisiae/genetics , Anticodon/genetics , Leucine/genetics , RNA, Transfer, Leu/genetics , Genetic Code , Codon , RNA, Transfer/genetics , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Alanine/genetics , Mammals/genetics
2.
RNA ; 29(9): 1400-1410, 2023 09.
Article in English | MEDLINE | ID: mdl-37279998

ABSTRACT

Unique chemical and physical properties are introduced by inserting selenocysteine (Sec) at specific sites within proteins. Recombinant and facile production of eukaryotic selenoproteins would benefit from a yeast expression system; however, the selenoprotein biosynthetic pathway was lost in the evolution of the kingdom Fungi as it diverged from its eukaryotic relatives. Based on our previous development of efficient selenoprotein production in bacteria, we designed a novel Sec biosynthesis pathway in Saccharomyces cerevisiae using Aeromonas salmonicida translation components. S. cerevisiae tRNASer was mutated to resemble A. salmonicida tRNASec to allow recognition by S. cerevisiae seryl-tRNA synthetase as well as A. salmonicida selenocysteine synthase (SelA) and selenophosphate synthetase (SelD). Expression of these Sec pathway components was then combined with metabolic engineering of yeast to enable the production of active methionine sulfate reductase enzyme containing genetically encoded Sec. Our report is the first demonstration that yeast is capable of selenoprotein production by site-specific incorporation of Sec.


Subject(s)
Saccharomyces cerevisiae , Codon, Terminator/genetics , Codon, Terminator/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Aeromonas salmonicida/genetics , Protein Engineering , RNA, Transfer, Cys/chemistry , RNA, Transfer, Cys/genetics , RNA, Transfer, Cys/metabolism , Humans , Nucleic Acid Conformation
3.
J Biol Chem ; 299(7): 104852, 2023 07.
Article in English | MEDLINE | ID: mdl-37224963

ABSTRACT

The correct coupling of amino acids with transfer RNAs (tRNAs) is vital for translating genetic information into functional proteins. Errors during this process lead to mistranslation, where a codon is translated using the wrong amino acid. While unregulated and prolonged mistranslation is often toxic, growing evidence suggests that organisms, from bacteria to humans, can induce and use mistranslation as a mechanism to overcome unfavorable environmental conditions. Most known cases of mistranslation are caused by translation factors with poor substrate specificity or when substrate discrimination is sensitive to molecular changes such as mutations or posttranslational modifications. Here we report two novel families of tRNAs, encoded by bacteria from the Streptomyces and Kitasatospora genera, that adopted dual identities by integrating the anticodons AUU (for Asn) or AGU (for Thr) into the structure of a distinct proline tRNA. These tRNAs are typically encoded next to a full-length or truncated version of a distinct isoform of bacterial-type prolyl-tRNA synthetase. Using two protein reporters, we showed that these tRNAs translate asparagine and threonine codons with proline. Moreover, when expressed in Escherichia coli, the tRNAs cause varying growth defects due to global Asn-to-Pro and Thr-to-Pro mutations. Yet, proteome-wide substitutions of Asn with Pro induced by tRNA expression increased cell tolerance to the antibiotic carbenicillin, indicating that Pro mistranslation can be beneficial under certain conditions. Collectively, our results significantly expand the catalog of organisms known to possess dedicated mistranslation machinery and support the concept that mistranslation is a mechanism for cellular resiliency against environmental stress.


Subject(s)
Genetic Code , Protein Biosynthesis , RNA, Transfer , Humans , Amino Acids/metabolism , Codon/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Proline/metabolism , Protein Biosynthesis/genetics , Proteins/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Threonine/metabolism , Streptomyces/genetics , Mutation , Proteome
4.
Front Vet Sci ; 9: 923878, 2022.
Article in English | MEDLINE | ID: mdl-35812884

ABSTRACT

Vesicular disease caused by Senecavirus A (SVA) is clinically indistinguishable from foot-and-mouth disease (FMD) and other vesicular diseases of swine. When a vesicle is observed in FMD-free countries, a costly and time-consuming foreign animal disease investigation (FADI) is performed to rule out FMD. Recently, there has been an increase in the number of FADIs and SVA positive samples at slaughter plants in the U.S. The objectives of this investigation were to: (1) describe the environmental burden of SVA in sow slaughter plants; (2) determine whether there was a correlation between PCR diagnostics, virus isolation (VI), and swine bioassay results; and (3) phylogenetically characterize the genetic diversity of contemporary SVA isolates. Environmental swabs were collected from three sow slaughter plants (Plants 1-3) and one market-weight slaughter plant (Plant 4) between June to December 2020. Of the 426 samples taken from Plants 1-3, 304 samples were PCR positive and 107 were VI positive. There was no detection of SVA by PCR or VI at Plant 4. SVA positive samples were most frequently found in the summer (78.3% June-September, vs. 59.4% October-December), with a peak at 85% in August. Eighteen PCR positive environmental samples with a range of Ct values were selected for a swine bioassay: a single sample infected piglets (n = 2). A random subset of the PCR positive samples was sequenced; and phylogenetic analysis demonstrated co-circulation and divergence of two genetically distinct groups of SVA. These data demonstrate that SVA was frequently found in the environment of sow slaughter plants, but environmental persistence and diagnostic detection was not indicative of whether a sampled was infectious to swine. Consequently, a more detailed understanding of the epidemiology of SVA and its environmental persistence in the marketing chain is necessary to reduce the number of FADIs and aide in the development of control measures to reduce the spread of SVA.

5.
ACS Chem Biol ; 17(5): 1269-1281, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35522208

ABSTRACT

Covalent antibody recruiting molecules (cARMs) constitute a proximity-inducing chemical strategy to modulate the recognition and elimination of cancer cells by the immune system. Recognition is achieved through synthetic bifunctional molecules that use covalency to stably bridge endogenous hapten-specific antibodies like anti-dinitrophenyl (anti-DNP), with tumor antigens on cancer cell surfaces. To recruit these antibodies, cARMs are equipped with the native hapten-binding molecule. The majority of cancer-killing immune machinery, however, recognizes epitopes on protein ligands and not small molecule haptens (e.g., Fc receptors, pathogen-specific antibodies). To access this broader class of immune machinery for recruitment, we developed a covalent immune proximity-inducing strategy. This strategy uses synthetic bifunctional electrophilic peptides derived from the native protein ligand. These bifunctional peptides are engineered to contain both a tumor-targeting molecule and a sulfonyl (VI) fluoride exchange (SuFEx) electrophile. As a proof of concept, we synthesized bifunctional electrophilic peptides derived from glycoprotein D (gD) on herpes simplex virus (HSV), to recruit gD-specific serum anti-HSV antibodies to cancer cells expressing the prostate-specific membrane antigen (PSMA). We demonstrate that serum anti-HSV antibodies can be selectively and irreversibly targeted by these electrophilic peptides and that the reaction rate can be uniquely enhanced by tuning SuFEx chemistry without a loss in selectivity. In cellular assays, electrophilic peptides demonstrated enhanced anti-tumor immunotherapeutic efficacy compared to analogous peptides lacking electrophilic functionality. This enhanced efficacy was especially prominent in the context of (a) natural anti-HSV antibodies isolated from human serum and (b) harder to treat tumor cells associated with lower PSMA expression levels. Overall, we demonstrate a new covalent peptide-based approach to immune proximity induction and reveal the potential utility of anti-viral antibodies in synthetic tumor immunotherapy.


Subject(s)
Herpes Simplex , Neoplasms , Antibodies/chemistry , Haptens , Humans , Immunotherapy , Male , Peptides , Simplexvirus , Viral Envelope Proteins/metabolism
6.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Article in English | MEDLINE | ID: mdl-34413202

ABSTRACT

Inaccurate expression of the genetic code, also known as mistranslation, is an emerging paradigm in microbial studies. Growing evidence suggests that many microbial pathogens can deliberately mistranslate their genetic code to help invade a host or evade host immune responses. However, discovering different capacities for deliberate mistranslation remains a challenge because each group of pathogens typically employs a unique mistranslation mechanism. In this study, we address this problem by studying duplicated genes of aminoacyl-transfer RNA (tRNA) synthetases. Using bacterial prolyl-tRNA synthetase (ProRS) genes as an example, we identify an anomalous ProRS isoform, ProRSx, and a corresponding tRNA, tRNAProA, that are predominately found in plant pathogens from Streptomyces species. We then show that tRNAProA has an unusual hybrid structure that allows this tRNA to mistranslate alanine codons as proline. Finally, we provide biochemical, genetic, and mass spectrometric evidence that cells which express ProRSx and tRNAProA can translate GCU alanine codons as both alanine and proline. This dual use of alanine codons creates a hidden proteome diversity due to stochastic Ala→Pro mutations in protein sequences. Thus, we show that important plant pathogens are equipped with a tool to alter the identity of their sense codons. This finding reveals the initial example of a natural tRNA synthetase/tRNA pair for dedicated mistranslation of sense codons.


Subject(s)
Amino Acyl-tRNA Synthetases/metabolism , Codon , Escherichia coli/metabolism , Genetic Code , Protein Biosynthesis , RNA, Transfer, Amino Acyl/metabolism , Streptomyces/metabolism , Alanine/genetics , Alanine/metabolism , Amino Acid Sequence , Amino Acyl-tRNA Synthetases/genetics , Escherichia coli/genetics , Escherichia coli/growth & development , Proline/genetics , Proline/metabolism , RNA, Transfer, Amino Acyl/genetics , Sequence Homology , Streptomyces/genetics , Streptomyces/growth & development , Substrate Specificity
7.
ACS Cent Sci ; 5(7): 1289-1294, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31403077

ABSTRACT

Here, we report that wild type Escherichia coli ribosomes accept and elongate precharged initiator tRNAs acylated with multiple benzoic acids, including aramid precursors, as well as malonyl (1,3-dicarbonyl) substrates to generate a diverse set of aramid-peptide and polyketide-peptide hybrid molecules. This work expands the scope of ribozyme- and ribosome-catalyzed chemical transformations, provides a starting point for in vivo translation engineering efforts, and offers an alternative strategy for the biosynthesis of polyketide-peptide natural products.

8.
J Biol Chem ; 294(34): 12855-12865, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31296657

ABSTRACT

Selenocysteine (Sec) is the 21st genetically encoded amino acid in organisms across all domains of life. Although structurally similar to cysteine (Cys), the Sec selenol group has unique properties that are attractive for protein engineering and biotechnology applications. Production of designer proteins with Sec (selenoproteins) at desired positions is now possible with engineered translation systems in Escherichia coli However, obtaining pure selenoproteins at high yields is limited by the accumulation of free Sec in cells, causing undesired incorporation of Sec at Cys codons due to the inability of cysteinyl-tRNA synthetase (CysRS) to discriminate against Sec. Sec misincorporation is toxic to cells and causes protein aggregation in yeast. To overcome this limitation, here we investigated a CysRS from the selenium accumulator plant Astragalus bisulcatus that is reported to reject Sec in vitro Sequence analysis revealed a rare His → Asn variation adjacent to the CysRS catalytic pocket. Introducing this variation into E. coli and Saccharomyces cerevisiae CysRS increased resistance to the toxic effects of selenite and selenomethionine (SeMet), respectively. Although the CysRS variant could still use Sec as a substrate in vitro, we observed a reduction in the frequency of Sec misincorporation at Cys codons in vivo We surmise that the His → Asn variation can be introduced into any CysRS to provide a fitness advantage for strains burdened by Sec misincorporation and selenium toxicity. Our results also support the notion that the CysRS variant provides higher specificity for Cys as a mechanism for plants to grow in selenium-rich soils.


Subject(s)
Amino Acyl-tRNA Synthetases/genetics , Astragalus Plant/enzymology , Escherichia coli/chemistry , Selenious Acid/toxicity , Selenocysteine/metabolism , Amino Acyl-tRNA Synthetases/metabolism , Escherichia coli/metabolism , Genetic Complementation Test , Hydrolysis , Selenious Acid/metabolism
9.
Genes (Basel) ; 9(11)2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30405060

ABSTRACT

Transfer RNA (tRNA) is a dynamic molecule used by all forms of life as a key component of the translation apparatus. Each tRNA is highly processed, structured, and modified, to accurately deliver amino acids to the ribosome for protein synthesis. The tRNA molecule is a critical component in synthetic biology methods for the synthesis of proteins designed to contain non-canonical amino acids (ncAAs). The multiple interactions and maturation requirements of a tRNA pose engineering challenges, but also offer tunable features. Major advances in the field of genetic code expansion have repeatedly demonstrated the central importance of suppressor tRNAs for efficient incorporation of ncAAs. Here we review the current status of two fundamentally different translation systems (TSs), selenocysteine (Sec)- and pyrrolysine (Pyl)-TSs. Idiosyncratic requirements of each of these TSs mandate how their tRNAs are adapted and dictate the techniques used to select or identify the best synthetic variants.

10.
RNA Biol ; 15(4-5): 567-575, 2018.
Article in English | MEDLINE | ID: mdl-28933646

ABSTRACT

High-fidelity translation and a strictly accurate proteome were originally assumed as essential to life and cellular viability. Yet recent studies in bacteria and eukaryotic model organisms suggest that proteome-wide mistranslation can provide selective advantages and is tolerated in the cell at higher levels than previously thought (one error in 6.9 × 10-4 in yeast) with a limited impact on phenotype. Previously, we selected a tRNAPro containing a single mutation that induces mistranslation with alanine at proline codons in yeast. Yeast tolerate the mistranslation by inducing a heat-shock response and through the action of the proteasome. Here we found a homologous human tRNAPro (G3:U70) mutant that is not aminoacylated with proline, but is an efficient alanine acceptor. In live human cells, we visualized mistranslation using a green fluorescent protein reporter that fluoresces in response to mistranslation at proline codons. In agreement with measurements in yeast, quantitation based on the GFP reporter suggested a mistranslation rate of up to 2-5% in HEK 293 cells. Our findings suggest a stress-dependent phenomenon where mistranslation levels increased during nutrient starvation. Human cells did not mount a detectable heat-shock response and tolerated this level of mistranslation without apparent impact on cell viability. Because humans encode ∼600 tRNA genes and the natural population has greater tRNA sequence diversity than previously appreciated, our data also demonstrate a cell-based screen with the potential to elucidate mutations in tRNAs that may contribute to or alleviate disease.


Subject(s)
Alanine/metabolism , Amino Acyl-tRNA Synthetases/genetics , Mutation , Proline/metabolism , Protein Biosynthesis , RNA Processing, Post-Transcriptional , RNA, Transfer, Pro/genetics , Alanine/genetics , Amino Acyl-tRNA Synthetases/metabolism , Aminoacylation , Anticodon/chemistry , Anticodon/metabolism , Cell Survival/drug effects , Codon/chemistry , Codon/metabolism , Culture Media/pharmacology , Escherichia coli/genetics , Escherichia coli/metabolism , Genes, Reporter , Glucose/deficiency , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Plasmids/chemistry , Plasmids/metabolism , Proline/genetics , Proteasome Endopeptidase Complex/metabolism , RNA, Transfer, Pro/metabolism , Transfection
11.
Genetics ; 206(4): 1865-1879, 2017 08.
Article in English | MEDLINE | ID: mdl-28576863

ABSTRACT

The genetic code converts information from nucleic acid into protein. The genetic code was thought to be immutable, yet many examples in nature indicate that variations to the code provide a selective advantage. We used a sensitive selection system involving suppression of a deleterious allele (tti2-L187P) in Saccharomyces cerevisiae to detect mistranslation and identify mechanisms that allow genetic code evolution. Though tRNASer containing a proline anticodon (UGG) is toxic, using our selection system we identified four tRNASerUGG variants, each with a single mutation, that mistranslate at a tolerable level. Mistranslating tRNALeuUGG variants were also obtained, demonstrating the generality of the approach. We characterized two of the tRNASerUGG variants. One contained a G26A mutation, which reduced cell growth to 70% of the wild-type rate, induced a heat shock response, and was lost in the absence of selection. The reduced toxicity of tRNASerUGG-G26A is likely through increased turnover of the tRNA, as lack of methylation at G26 leads to degradation via the rapid tRNA decay pathway. The second tRNASerUGG variant, with a G9A mutation, had minimal effect on cell growth, was relatively stable in cells, and gave rise to less of a heat shock response. In vitro, the G9A mutation decreases aminoacylation and affects folding of the tRNA. Notably, the G26A and G9A mutations were phenotypically neutral in the context of an otherwise wild-type tRNASer These experiments reveal a model for genetic code evolution in which tRNA anticodon mutations and mistranslation evolve through phenotypically ambivalent intermediates that reduce tRNA function.


Subject(s)
Codon/genetics , Evolution, Molecular , RNA, Transfer, Pro/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Mutation , Phenotype , Protein Biosynthesis , RNA Stability , RNA, Transfer, Pro/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
12.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt B): 3070-3080, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28153753

ABSTRACT

BACKGROUND: The conservation of the genetic code indicates that there was a single origin, but like all genetic material, the cell's interpretation of the code is subject to evolutionary pressure. Single nucleotide variations in tRNA sequences can modulate codon assignments by altering codon-anticodon pairing or tRNA charging. Either can increase translation errors and even change the code. The frozen accident hypothesis argued that changes to the code would destabilize the proteome and reduce fitness. In studies of model organisms, mistranslation often acts as an adaptive response. These studies reveal evolutionary conserved mechanisms to maintain proteostasis even during high rates of mistranslation. SCOPE OF REVIEW: This review discusses the evolutionary basis of altered genetic codes, how mistranslation is identified, and how deviations to the genetic code are exploited. We revisit early discoveries of genetic code deviations and provide examples of adaptive mistranslation events in nature. Lastly, we highlight innovations in synthetic biology to expand the genetic code. MAJOR CONCLUSIONS: The genetic code is still evolving. Mistranslation increases proteomic diversity that enables cells to survive stress conditions or suppress a deleterious allele. Genetic code variants have been identified by genome and metagenome sequence analyses, suppressor genetics, and biochemical characterization. GENERAL SIGNIFICANCE: Understanding the mechanisms of translation and genetic code deviations enables the design of new codes to produce novel proteins. Engineering the translation machinery and expanding the genetic code to incorporate non-canonical amino acids are valuable tools in synthetic biology that are impacting biomedical research. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.


Subject(s)
Adaptation, Biological/genetics , Codon/genetics , Genetic Code , Mutation/physiology , Protein Biosynthesis/genetics , Protein Engineering , Animals , Evolution, Molecular , Humans , Polymorphism, Genetic/physiology , Protein Engineering/methods , Protein Engineering/trends
13.
Nucleic Acids Res ; 45(6): 3407-3421, 2017 04 07.
Article in English | MEDLINE | ID: mdl-27899648

ABSTRACT

Despite the general requirement for translation fidelity, mistranslation can be an adaptive response. We selected spontaneous second site mutations that suppress the stress sensitivity caused by a Saccharomyces cerevisiae tti2 allele with a Leu to Pro mutation at residue 187, identifying a single nucleotide mutation at the same position (C70U) in four tRNAProUGG genes. Linkage analysis and suppression by SUF9G3:U70 expressed from a centromeric plasmid confirmed the causative nature of the suppressor mutation. Since the mutation incorporates the G3:U70 identity element for alanyl-tRNA synthetase into tRNAPro, we hypothesized that suppression results from mistranslation of Pro187 in Tti2L187P as Ala. A strain expressing Tti2L187A was not stress sensitive. In vitro, tRNAProUGG (C70U) was mis-aminoacylated with alanine by alanyl-tRNA synthetase, but was not a substrate for prolyl-tRNA synthetase. Mass spectrometry from protein expressed in vivo and a novel GFP reporter for mistranslation confirmed substitution of alanine for proline at a rate of ∼6%. Mistranslating cells expressing SUF9G3:U70 induce a partial heat shock response but grow nearly identically to wild-type. Introducing the same G3:U70 mutation in SUF2 (tRNAProAGG) suppressed a second tti2 allele (tti2L50P). We have thus identified a strategy that allows mistranslation to suppress deleterious missense Pro mutations in Tti2.


Subject(s)
Amino Acid Substitution , Molecular Chaperones/genetics , Protein Biosynthesis , RNA, Transfer, Pro/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Suppression, Genetic , Alleles , Introns , Molecular Chaperones/biosynthesis , Saccharomyces cerevisiae Proteins/biosynthesis , Selection, Genetic
14.
G3 (Bethesda) ; 6(6): 1649-59, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27172216

ABSTRACT

The TTT complex is composed of the three essential proteins Tel2, Tti1, and Tti2 The complex is required to maintain steady state levels of phosphatidylinositol 3-kinase-related kinase (PIKK) proteins, including mTOR, ATM/Tel1, ATR/Mec1, and TRRAP/Tra1, all of which serve as regulators of critical cell signaling pathways. Due to their association with heat shock proteins, and with newly synthesized PIKK peptides, components of the TTT complex may act as cochaperones. Here, we analyze the consequences of depleting the cellular level of Tti2 in Saccharomyces cerevisiae We show that yeast expressing low levels of Tti2 are viable under optimal growth conditions, but the cells are sensitive to a number of stress conditions that involve PIKK pathways. In agreement with this, depleting Tti2 levels decreased expression of Tra1, Mec1, and Tor1, affected their localization and inhibited the stress responses in which these molecules are involved. Tti2 expression was not increased during heat shock, implying that it does not play a general role in the heat shock response. However, steady state levels of Hsp42 increase when Tti2 is depleted, and tti2L187P has a synthetic interaction with exon 1 of the human Huntingtin gene containing a 103 residue polyQ sequence, suggesting a general role in protein quality control. We also find that overexpressing Hsp90 or its cochaperones is synthetic lethal when Tti2 is depleted, an effect possibly due to imbalanced stoichiometry of a complex required for PIKK assembly. These results indicate that Tti2 does not act as a general chaperone, but may have a specialized function in PIKK folding and/or complex assembly.


Subject(s)
Molecular Chaperones/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Stress, Physiological , Alleles , Cell Survival/genetics , Gene Expression , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones/genetics , Mutation , Protein Transport , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction , Stress, Physiological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...