Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Euro Surveill ; 29(2)2024 Jan.
Article in English | MEDLINE | ID: mdl-38214080

ABSTRACT

BackgroundIn Sweden, information on seroprevalence of tick-borne encephalitis virus (TBEV) in the population, including vaccination coverage and infection, is scattered. This is largely due to the absence of a national tick-borne encephalitis (TBE) vaccination registry, scarcity of previous serological studies and use of serological methods not distinguishing between antibodies induced by vaccination and infection. Furthermore, the number of notified TBE cases in Sweden has continued to increase in recent years despite increased vaccination.AimThe aim was to estimate the TBEV seroprevalence in Sweden.MethodsIn 2018 and 2019, 2,700 serum samples from blood donors in nine Swedish regions were analysed using a serological method that can distinguish antibodies induced by vaccination from antibodies elicited by infection. The regions were chosen to reflect differences in notified TBE incidence.ResultsThe overall seroprevalence varied from 9.7% (95% confidence interval (CI): 6.6-13.6%) to 64.0% (95% CI: 58.3-69.4%) between regions. The proportion of vaccinated individuals ranged from 8.7% (95% CI: 5.8-12.6) to 57.0% (95% CI: 51.2-62.6) and of infected from 1.0% (95% CI: 0.2-3.0) to 7.0% (95% CI: 4.5-10.7). Thus, more than 160,000 and 1,600,000 individuals could have been infected by TBEV and vaccinated against TBE, respectively. The mean manifestation index was 3.1%.ConclusionA difference was observed between low- and high-incidence TBE regions, on the overall TBEV seroprevalence and when separated into vaccinated and infected individuals. The estimated incidence and manifestation index argue that a large proportion of TBEV infections are not diagnosed.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Flavivirus Infections , Humans , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/prevention & control , Sweden/epidemiology , Vaccination Coverage , Seroepidemiologic Studies , Vaccination , Antibodies, Viral
2.
iScience ; 26(12): 108441, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38144451

ABSTRACT

Susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is highly variable and could be mediated by a cross-protective pre-immunity. We identified 14 cross-reactive peptides between SARS-CoV-2 and influenza A H1N1, H3N2, and human herpesvirus (HHV)-6A/B with potential relevance. The H1N1 peptide NGVEGF was identical to a peptide in the most critical receptor binding motif in SARS-CoV-2 spike protein that interacts with the angiotensin converting enzyme 2 receptor. About 62%-73% of COVID-19-negative blood donors in Stockholm had antibodies to this peptide in the early pre-vaccination phase of the pandemic. Seasonal flu vaccination enhanced neutralizing capacity to SARS-CoV-2 and T cell immunity to this peptide. Mathematical modeling taking the estimated pre-immunity levels to flu into account could fully predict pre-Omicron SARS-CoV-2 outbreaks in Stockholm and India. This cross-immunity provides mechanistic explanations to the epidemiological observation that influenza vaccination protected people against early SARS-CoV-2 infections and implies that flu-mediated cross-protective immunity significantly dampened the first SARS-CoV-2 outbreaks.

3.
Acta Oncol ; 62(12): 1707-1715, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37729083

ABSTRACT

BACKGROUND: Swedish recommendations to reduce the risk of COVID-19 relied on each citizen's own sense of responsibility rather than mandatory lockdowns. We studied how COVID-19-related self-isolation and anxiety correlated to SARS-CoV-2 seropositivity and PCR-positivity in patients with active cancer treatment. METHODS: In a longitudinal cohort study at Uppsala University Hospital patients and cancer personnel were included between April 1st 2020 to August 1st 2020. Serological testing for SARS-CoV-2 was done every 8-12-weeks until 30 March 2021. Patients completed a survey at inclusion regarding self-reported COVID-19-related anxiety and self-isolation. RESULTS: A total of 622 patients [n = 475 with solid malignancies (SM), n = 147 with haematological malignancies (HM)], and 358 healthcare personnel were included. The seropositivity rate was lower for patients than for personnel; 10.5% for SM patients, 6.8% for HM patients, and 16.2% for personnel (p = 0.005). Strict adherence to self-isolation guidelines was reported by 54% of patients but was not associated with a lower risk of becoming seropositive [OR = 1.4 (0.8-2.5), p = 0.2]. High anxiety was expressed by 32% of patients, more often by SM patients than HM patients (34% vs 25% [OR = 1.6 (1.1-2.5, p = 0.03)]). Female gender [OR = 3.5 (2.4-5.2), p < 0.001] and being born outside of Europe [OR = 2.9 (1.4-6.4), p = 0.007] were both associated with high anxiety. Patients reporting high anxiety became seropositive to a similar degree as those with low anxiety [OR = 0.7 (0.3-1.2), p = 0.2]. HM patients with PCR-positive COVID-19 were more likely than SM patients to require oxygen therapy, including non-invasive ventilation/intubation (69% vs. 26%, p = 0.005). CONCLUSION: For Swedish patients on active cancer treatment, high self-assessed COVID-19-related anxiety or strict adherence to self-isolation guidelines were not associated with a lower risk of COVID-19. Patients with HM were less likely to develop serological antibody response after COVID-19 and were more likely to require advanced hospital care, but expressed less COVID-19-related anxiety than patients with SM.


Subject(s)
COVID-19 , Neoplasms , Humans , Female , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Sweden/epidemiology , Longitudinal Studies , Communicable Disease Control , Neoplasms/epidemiology , Neoplasms/therapy
4.
Viruses ; 15(6)2023 05 30.
Article in English | MEDLINE | ID: mdl-37376580

ABSTRACT

The current gold standard assay for detecting neutralizing antibodies (NAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the conventional virus neutralization test (cVNT), which requires infectious virus and a biosafety level 3 laboratory. Here, we report the development of a SARS-CoV-2 surrogate virus neutralization test (sVNT) that, with Luminex technology, detects NAbs. The assay was designed to mimic the virus-host interaction and is based on antibody blockage between the human angiotensin-converting enzyme 2 (hACE2) receptor and the spike (S) protein of the Wuhan, Delta, and Omicron (B.1.1.529) variants of SARS-CoV-2. The sVNT proved to have a 100% correlation with a SARS-CoV-2 cVNT regarding qualitative results. Binding between the hACE2 receptor and the S1 domain of the B.1.1.529 lineage of the Omicron variant was not observed in the assay but between the receptor and an S1 + S2 trimer and the receptor binding domain (RBD) in a reduced manner, suggesting less efficient receptor binding for the B.1.1.529 Omicron variant. The results indicate that the SARS-CoV-2 sVNT is a suitable tool for both the research community and the public health service, as it may serve as an efficient diagnostic alternative to the cVNT.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Neutralization Tests , SARS-CoV-2/genetics , COVID-19/diagnosis , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral
5.
Microorganisms ; 11(1)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36677450

ABSTRACT

Identifying the species that act as hosts, vectors, and vehicles of vector-borne pathogens is vital for revealing the transmission cycles, dispersal mechanisms, and establishment of vector-borne pathogens in nature. Ticks are common vectors for pathogens causing human and animal diseases, and they transmit a greater variety of pathogenic agents than any other arthropod vector group. Ticks depend on the movements by their vertebrate hosts for their dispersal, and tick species with long feeding periods are more likely to be transported over long distances. Wild birds are commonly parasitized by ticks, and their migration patterns enable the long-distance range expansion of ticks. The African-Palearctic migration system is one of the world's largest migrations systems. African-Western Palearctic birds create natural links between the African, European, and Asian continents when they migrate biannually between breeding grounds in the Palearctic and wintering grounds in Africa and thereby connect different biomes. Climate is an important geographical determinant of ticks, and with global warming, the distribution range and abundance of ticks in the Western Palearctic may increase. The introduction of exotic ticks and their microorganisms into the Western Palearctic via avian vehicles might therefore pose a greater risk for the public and animal health in the future.

6.
Microorganisms ; 10(7)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35889112

ABSTRACT

The migratory behavior of wild birds contributes to the geographical spread of ticks and their microorganisms. In this study, we aimed to investigate the dispersal and co-occurrence of Francisella and spotted fever group Rickettsia (SFGR) in ticks infesting birds migrating northward in the African-Western Palaearctic region (AWPR). Birds were trapped with mist nests across the Mediterranean basin during the 2014 and 2015 spring migration. In total, 575 ticks were collected from 244 birds. We screened the ticks for the species Francisella tularensis, the genus Francisella, and SFGR by microfluidic real-time PCR. Confirmatory analyses and metagenomic sequencing were performed on tick samples that putatively tested positive for F. tularensis during initial screenings. Hyalomma rufipes was the most common tick species and had a high prevalence of Francisella, including co-occurrence of Francisella and SFGR. Metagenomic analysis of total DNA extracted from two H. rufipes confirmed the presence of Francisella, Rickettsia, and Midichloria. Average nucleotide identity and phylogenetic inference indicated the highest identity of the metagenome-assembled genomes to a Francisella-like endosymbiont (FLE), Rickettsia aeschlimannii, and Midichloria mitochondrii. The results of this study suggest that (i) FLE- and SFGR-containing ticks are dispersed by northbound migratory birds in the AWPR, (ii) H. rufipes likely is not involved in transmission of F. tularensis in the AWPR, and (iii) a dual endosymbiosis of FLEs and Midichloria may support some of the nutritional requirements of H. rufipes.

7.
Microorganisms ; 10(7)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35889164

ABSTRACT

Infections caused by arthropod-borne RNA viruses are overrepresented among emerging infectious diseases. Effective methods for collecting, storing, and transporting clinical or biological specimens are needed worldwide for disease surveillance. However, many tropical regions where these diseases are endemic lack analytical facilities and possibility of continuous cold chains, which presents challenges from both a biosafety and material preservation perspective. Whatman® FTA® Classic Cards may serve as an effective and safe option for transporting hazardous samples at room temperature, particularly for RNA viruses classified as biosafety level (BSL) 2 and 3 pathogens, from sampling sites to laboratories. In this study, we investigated the biosafety and perseverance of representative alpha- and flaviviruses stored on FTA® cards. To evaluate the virus inactivation capacity of FTA® cards, we used Sindbis virus (SINV), chikungunya virus (CHIKV), and Japanese encephalitis virus (JEV). We inoculated susceptible cells with dilution series of eluates from viral samples stored on the FTA® cards and observed for cytopathic effect to evaluate the ability of the cards to inactivate viruses. All tested viruses were inactivated after storage on FTA® cards. In addition, we quantified viral RNA of JEV, SINV, and tick-borne encephalitis virus (TBEV) stored on FTA® cards at 4 °C, 25 °C, and 37 °C for 30 days using two reverse transcriptase quantitative PCR assays. Viral RNA of SINV stored on FTA® cards was not reduced at either 4 °C or 25 °C over a 30-day period, but degraded rapidly at 37 °C. For JEV and TBEV, degradation was observed at all temperatures, with the most rapid degradation occurring at 37 °C. Therefore, the use of FTA® cards provides a safe and effective workflow for the collection, storage, and analysis of BSL 2- and 3-virus RNA samples, but there is a risk of false negative results if the cards are stored at higher temperatures for long periods of time. Conscious usage of the cards can be useful in disease surveillance and research, especially in tropical areas where transportation and cold chains are problematic.

8.
Pediatr Blood Cancer ; 69(10): e29773, 2022 10.
Article in English | MEDLINE | ID: mdl-35615775

ABSTRACT

BACKGROUND: Children develop symptomatic coronavirus disease 2019 (COVID-19) more rarely than adults upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pediatric oncology and hematology patients may be at increased risk of severe COVID-19 due to their underlying disease or treatment. We investigated COVID-19 and seroprevalence of anti-SARS-CoV-2 antibodies, respectively, in a Swedish cohort of pediatric oncology and hematology patients. PROCEDURE: Patients (n = 136) were recruited between June 2020 and September 2021 at Uppsala University Children's Hospital, Sweden. Up to six consecutive blood samples per patient were analyzed for wild-type anti-S1 IgM and IgG antibodies (including after vaccination, n = 4). Clinical data on COVID-19 (including polymerase chain reaction [PCR] test results) were collected from electronic medical records. A questionnaire was completed at recruitment. RESULTS: A cumulative seroprevalence (IgM and IgG) of 33% (45/136 patients, 95% confidence interval: 25%-41%) was observed in this patient cohort, of whom 66% (90/136 patients) were under severe immunosuppressive treatment during the study period. Increasing patient age (p = .037) and PCR test results (p < .002) were associated with seropositivity in nonvaccinated cases. Most seropositive, nonvaccinated cases (32/43, 74%) were never PCR-verified for SARS-CoV-2 infection. Of the 13 patients with PCR-verified infection, nine (69%) reported mild disease. A majority (63%) reported continued school attendance during the pandemic. CONCLUSIONS: Swedish pediatric oncology and hematology patients developed antibodies against SARS-CoV-2, despite their diagnosis and/or treatment, and the observed seroprevalence was similar to that in national pediatric outpatients. PCR-verified cases underestimate the true incidence of COVID-19 in this patient cohort.


Subject(s)
COVID-19 , Hematology , Neoplasms , Adult , Antibodies, Viral , COVID-19/epidemiology , Child , Humans , Immunoglobulin G , Immunoglobulin M , Neoplasms/epidemiology , SARS-CoV-2 , Seroepidemiologic Studies , Sweden/epidemiology
10.
One Health ; 13: 100349, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34825045

ABSTRACT

INTRODUCTION: The ecology of the vertebrate host contributes to the geographical range expansion of ticks. In this study, we investigated which tick taxa that infest and are dispersed by birds along African-Western Palaearctic flyways during northward migration, and whether bird ecology was associated with tick taxa. MATERIALS AND METHODS: Ticks were collected from birds trapped at bird observatories in Spain, Italy, Greece, and Israel during the spring migration of 2014 and 2015, using mist nets. The tick-infested bird species were classified into guilds, using different combinations of the variables: migration distance, wintering region, foraging behaviour, and winter habitat. Ticks were molecularly determined to genus and species level by sequencing fragments of the 12S ribosomal DNA (rDNA) gene and by phylogenetic inference, using the Maximum Likelihood algorithm. Data were analysed using descriptive measures, graphs, Chi2 tests, the Tukey-Kramer test, and a parametric linear model (generalized linear model) in order to analyse and adjust for characteristics in the bird guilds and their relationship to collected tick taxa. RESULTS: Most (84.2%) of the 10,209 trapped birds were long-distance migrants, of which 2.4% were infested by ticks. The most common tick species was Hyalomma rufipes (77.7%; 447/575), a known vector and reservoir of Crimean-Congo hemorrhagic fever virus. Bird guilds containing only long-distance migrants with wintering areas in Africa were associated with the tick species H. rufipes (p < 0.0001). Furthermore, bird winter habitat was associated with H. rufipes (p = 0.003); with bird species overwintering in open habitat (p = 0.014) and wetlands (p = 0.046) having significantly more H. rufipes as compared to birds with a winter habitat comprising forest and shrubs (p = 0.82). CONCLUSIONS: With climate change, the likelihood of establishment of permanent Hyalomma populations in central and northern Europe is increasing. Thus, surveillance programs for monitoring the risk of introduction and establishment of H. rufipes in the Western-Palaearctic should be established. Our study suggests that migratory bird species wintering in African open habitats and wetlands are good candidates for monitoring potential introduction.

11.
Viruses ; 13(6)2021 05 26.
Article in English | MEDLINE | ID: mdl-34073484

ABSTRACT

Due to the current, rapidly increasing Coronavirus disease 2019 (COVID-19) pandemic, efficient and highly specific diagnostic methods are needed. The receptor-binding part of the spike (S) protein, S1, has been suggested to be highly virus-specific; it does not cross-react with antibodies against other coronaviruses. Three recombinant partial S proteins of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) expressed in mammalian or baculovirus-insect cells were evaluated as antigens in a Luminex-based suspension immunoassay (SIA). The best performing antigen (S1; amino acids 16-685) was selected and further evaluated by serum samples from 76 Swedish patients or convalescents with COVID-19 (previously PCR and/or serologically confirmed), 200 pre-COVID-19 individuals (180 blood donors and 20 infants), and 10 patients with acute Epstein-Barr virus infection. All 76 positive samples showed detectable antibodies to S1, while none of the 210 negative controls gave a false positive antibody reaction. We further compared the COVID-19 SIA with a commercially available enzyme immunoassay and a previously evaluated COVID-19 rapid antibody test. The results revealed an overall assay sensitivity of 100%, a specificity of 100% for both IgM and IgG, a quantitative ability at concentrations up to 25 BAU/mL, and a better performance as compared to the commercial assays, suggesting the COVID-19 SIA as a most valuable tool for efficient laboratory-based serology.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Immunoassay/methods , SARS-CoV-2/immunology , COVID-19/immunology , Herpesvirus 4, Human/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Reproducibility of Results , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/immunology
12.
Viruses ; 13(6)2021 05 31.
Article in English | MEDLINE | ID: mdl-34072890

ABSTRACT

The potential of rapid point-of-care (POC) tests has been subject of doubt due to an eventual risk of production errors. The aim was therefore to evaluate the two separate production lots of a commercial POC lateral flow test, intended for the detection of IgM and IgG against the SARS-CoV-2 spike protein (S1). Control samples consisted of serum from individuals with confirmed SARS-CoV-2 infection and pre-COVID-19 negative sera gathered from a biobank. The presence of anti-S1 IgM/IgG in the sera was verified by an in-house Luminex-based serological assay (COVID-19 SIA). One hundred samples were verified as positive for anti-S1 IgG and 74 for anti-S1 IgM. Two hundred samples were verified as negative for anti-S1 IgM/IgG. For the two lots of the POC-test, the sensitivities were 93.2% and 87.8% for IgM and 93.0% and 100% for IgG. The specificities were 100% for IgM and 99.5% for IgG. The positive predictive value was 100% for IgM and 98.9% and 99.0% for IgG. The negative predictive value was 97.6% and 95.7% for IgM, and 96.6% and 100% for IgG. The evaluated POC-test is suitable to assess anti-SARS-CoV-2 S1 IgM and IgG, as a measure of previous virus exposure on an individual level. The external validation of separate lots of rapid POC-tests is encouraged to ensure high sensitivity before market introduction.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Point-of-Care Testing , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Sensitivity and Specificity
13.
Virol J ; 18(1): 109, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34078386

ABSTRACT

BACKGROUND: The ongoing SARS-CoV-2 pandemic has spread rapidly worldwide and disease prevention is more important than ever. In the absence of a vaccine, knowledge of the transmission routes and risk areas of infection remain the most important existing tools to prevent further spread. METHODS: Here we investigated the presence of the SARS-CoV-2 virus in the hospital environment at the Uppsala University Hospital Infectious Disease ward by RT-qPCR and determined the infectivity of the detected virus in vitro on Vero E6 cells. RESULTS: SARS-CoV-2 RNA was detected in several areas, although attempts to infect Vero E6 cells with positive samples were unsuccessful. However, RNase A treatment of positive samples prior to RNA extraction did not degrade viral RNA, indicating the presence of SARS-CoV-2 nucleocapsids or complete virus particles protecting the RNA as opposed to free viral RNA. CONCLUSION: Our results show that even in places where a moderate concentration (Ct values between 30 and 38) of SARS-CoV-2 RNA was found; no infectious virus could be detected. This suggests that the SARS-CoV-2 virus in the hospital environment subsides in two states; as infectious and as non-infectious. Future work should investigate the reasons for the non-infectivity of SARS-CoV-2 virions.


Subject(s)
COVID-19/transmission , Cross Infection/epidemiology , Disease Transmission, Infectious/statistics & numerical data , Environmental Monitoring/methods , Animals , Cell Line , Chlorocebus aethiops , Confined Spaces , Cross Infection/virology , Hospitals , Humans , Risk , SARS-CoV-2/growth & development , Ventilation/methods , Vero Cells
14.
Heliyon ; 7(2): e06328, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33644482

ABSTRACT

Possible pre- or asymptomatic transmission has been reported, both from SARS-CoV and from MERS-CoV outbreaks, although this appears to be uncommon. In contrast, during the COVID-19 pandemic, an increasing number of studies and case reports indicate that pre- or asymptomatic transmission of SARS-CoV-2 is not only possible but also occurs frequently. We report repeated rRT-PCR detection of SARS-CoV-2 in a health care worker and demonstrate infective ability up to three days prior to mild COVID-19 symptoms. rRT-PCR indicated high viral levels approximately three days after exposure. Viral samples collected one and three days prior to symptoms exhibited infectivity on Vero E6 cells, confirmed by detection of double-stranded RNA by immunofluorescence, assessment of cytopathic effect (CPE) and rRT-PCR. SARS-CoV-2 specific IgM and IgG antibodies were detected by day 9 and 15, respectively, after symptom onset. We propose that this provides evidence for potential early presymptomatic transmission of SARS-CoV-2 and that infectivity may be manifest shortly after exposure.

15.
Sci Rep ; 10(1): 19589, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33177563

ABSTRACT

Evidence suggests that SARS-CoV-2, as well as other coronaviruses, can be dispersed and potentially transmitted by aerosols directly or via ventilation systems. We therefore investigated ventilation openings in one COVID-19 ward and central ducts that expel indoor air from three COVID-19 wards at Uppsala University Hospital, Sweden, during April and May 2020. Swab samples were taken from individual ceiling ventilation openings and surfaces in central ducts. Samples were subsequently subjected to rRT-PCR targeting the N and E genes of SARS-CoV-2. Central ventilation HEPA filters, located several stories above the wards, were removed and portions analyzed in the same manner. In two subsequent samplings, SARS-CoV-2 N and E genes were detected in seven and four out of 19 room vents, respectively. Central ventilation HEPA exhaust filters from the ward were found positive for both genes in three samples. Corresponding filters from two other, adjacent COVID-19 wards were also found positive. Infective ability of the samples was assessed by inoculation of susceptible cell cultures but could not be determined in these experiments. Detection of SARS-CoV-2 in central ventilation systems, distant from patient areas, indicate that virus can be transported long distances and that droplet transmission alone cannot reasonably explain this, especially considering the relatively low air change rates in these wards. Airborne transmission of SARS-CoV-2 must be taken into consideration for preventive measures.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/transmission , Hospitals , Pneumonia, Viral/transmission , Aerosols , Animals , Betacoronavirus/genetics , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Filtration , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , RNA, Viral/analysis , SARS-CoV-2 , Ventilation , Vero Cells
17.
Infect Ecol Epidemiol ; 10(1): 1789036, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32939231

ABSTRACT

The COVID-19 pandemic is growing and spread in the Swedish elderly care system during April 2020. The increasing number of employees on sick-leave due to COVID-19 created severe logistic problems. Some elderly care homes therefore started to screen their personnel to secure the safety of the elderly and to avoid unnecessary quarantine of potentially immune employees. Secondary data from a screening with a COVID-19 rapid test for detection of SARS-CoV-2-specific IgM and IgG of 1,005 employees in 22 elderly care homes in Stockholm, Sweden, were analyzed. Seropositive employees were found in 21 out of the 22 care homes. In total, 23% (231/1,005) of the employees tested positive for antibodies against SARS-CoV-2, and 14.3% (144/1,005) were found positive for IgM (either alone or combined with IgG), indicating recent or present infection. Of those that tested seropositive, 46.5% did not report any clinical symptoms, indicating pre- or asymptomatic infections. Reported symptoms with the highest correlation with seropositivity were fever and loss of smell and taste. These results suggest that antibody testing of employees in elderly care homes is valuable for surveillance of disease development and a crucial screening tool in the effort to decrease the death toll in this pandemic.

18.
Infect Ecol Epidemiol ; 10(1): 1754538, 2020.
Article in English | MEDLINE | ID: mdl-32363011

ABSTRACT

COVID-19 is the most rapidly growing pandemic in modern time, and the need for serological testing is most urgent. Although the diagnostics of acute patients by RT-PCR is both efficient and specific, we are also crucially in need of serological tools for investigating antibody responses and assessing individual and potential herd immunity. We evaluated a commercially available test developed for rapid (within 15 minutes) detection of SARS-CoV-2-specific IgM and IgG by 29 PCR-confirmed COVID-19 cases and 124 negative controls. The results revealed a sensitivity of 69% and 93.1% for IgM and IgG, respectively, based solely on PCR-positivity due to the absence of a serological gold standard. The assay specificities were shown to be 100% for IgM and 99.2% for IgG. This indicates that the test is suitable for assessing previous virus exposure, although negative results may be unreliable during the first weeks after infection. More detailed studies on antibody responses during and post infection are urgently needed.

19.
Parasit Vectors ; 13(1): 238, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32381072

ABSTRACT

BACKGROUND: Anaplasma phagocytophilum is a Gram-negative obligate intracellular bacterium that replicates in neutrophil granulocytes. It is transmitted by ticks of the Ixodes ricinus complex and causes febrile illness in humans and animals. The geographical distribution of A. phagocytophilum spans the Americas, Europe, Africa and Asia. However, human disease predominantly occurs in North America but is infrequently reported from Europe and Asia. In North American strains, the absence of the drhm gene has been proposed as marker for pathogenicity in humans whereas no information on the presence or absence of the drhm gene was available for A. phagocytophilum strains circulating in Europe. Therefore, we tested 511 European and 21 North American strains for the presence of drhm and compared the results to two other typing methods: multilocus sequence typing (MLST) and ankA-based typing. RESULTS: Altogether, 99% (478/484) of the analyzable European and 19% (4/21) of the North American samples from different hosts were drhm-positive. Regarding the strains from human granulocytic anaplasmosis cases, 100% (35/35) of European origin were drhm-positive and 100% (14/14) of North American origin were drhm-negative. Human strains from North America and Europe were both part of MLST cluster 1. North American strains from humans belonged to ankA gene clusters 11 and 12 whereas European strains from humans were found in ankA gene cluster 1. However, the North American ankA gene clusters 11 and 12 were highly identical at the nucleotide level to the European cluster 1 with 97.4% and 95.2% of identity, respectively. CONCLUSIONS: The absence of the drhm gene in A. phagocytophilum does not seem to be associated with pathogenicity for humans per se, because all 35 European strains of human origin were drhm-positive. The epidemiological differences between North America and Europe concerning the incidence of human A. phagocytophilum infection are not explained by strain divergence based on MLST and ankA gene-based typing.


Subject(s)
Anaplasma phagocytophilum/genetics , Anaplasma phagocytophilum/pathogenicity , Genes, Bacterial , Animals , Ehrlichiosis/epidemiology , Ehrlichiosis/microbiology , Europe/epidemiology , Genetic Markers , Genetic Variation , Humans , Incidence , Ixodes/microbiology , North America/epidemiology , Phylogeny , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Virulence/genetics
20.
Infect Ecol Epidemiol ; 10(1): 1729653, 2020.
Article in English | MEDLINE | ID: mdl-32284823

ABSTRACT

Anaplasma phagocytophilum (AP) has vast geographical and host ranges and causes disease in humans and domesticated animals. We investigated the role of northward migratory birds in the dispersal of tick-borne AP in the African-Western Palearctic. Ticks were collected from northward migratory birds trapped during spring migration of 2010 at two localities in the central Mediterranean Sea. AP DNA was detected by PCR (gltA and 16S rRNA) and variant determination was performed using ankA sequences. In total, 358 ticks were collected. One of 19 ticks determined as Ixodes was confirmed positive for AP DNA. The tick was collected from a woodchat shrike (Lanius senator senator) trapped in Greece, and molecularly determined to belong to the I. ricinus complex and sharing highest (95%) 16S RNA sequence identity to I. gibbosus. The ankA AP sequence exhibited highest similarity to sequences from rodents and shrews (82%) and ruminants (80%). Phylogenetic analyses placed it convincingly outside other clades, suggesting that it represents a novel AP variant. The divergent Ixodes species harboring a novel AP variant could either indicate an enzootic cycle involving co-evolution with birds, or dissemination from other regions by avian migration. None of the 331 Hyalomma marginatum sensu lato ticks, all immature stages, were positive for AP DNA, lending no evidence for the involvement of Hyalomma ticks transported by birds in the ecology of AP.

SELECTION OF CITATIONS
SEARCH DETAIL
...