Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mitochondrial DNA B Resour ; 7(6): 1183-1185, 2022.
Article in English | MEDLINE | ID: mdl-35783040

ABSTRACT

We present the draft mitochondrial genomes (mitogenomes) of two Lepisiota frauenfeldi (Mayr 1855) workers from two separate invasive populations detected in Western Australia (Perth OK569858) and Queensland (Brisbane OK5569859), Australia. The draft mitogenomes ranged between 16,657 and 17,090 bp and contained 37 genes (13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), and two ribosomal RNA (rRNA) genes). As with other arthropod mitogenomes, we observed high A + T content (A: 39.4-39.8%, T: 40.55-41.5%). We confirmed the species identity by molecular diagnostics based on the partial mtCOI gene that showed >99% similarity between the Australian populations and other L. frauenfeldi sequences reported to date, and in the process identified putative origins of the invasive populations as Pakistan and India for the WA and Qld incursions respectively that suggested separate introductions.

2.
Bull Entomol Res ; 108(4): 451-460, 2018 Aug.
Article in English | MEDLINE | ID: mdl-28920560

ABSTRACT

Anoplolepis gracilipes is one of the six most widespread and pestiferous invasive ant species. Populations of this invader in Arnhem Land, Australia have been observed to decline, but the reasons behind these declines are not known. We investigated if there is evidence of a pathogen that could be responsible for killing ant queens or affecting their reproductive output. We measured queen number per nest, fecundity and fat content of queens from A. gracilipes populations in various stages of decline or expansion. We found no significant difference in any of these variables among populations. However, 23% of queens were found to have melanized nodules, a cellular immune response, in their ovaries and fat bodies. The melanized nodules found in dissected queens are highly likely to indicate the presence of pathogens or parasites capable of infecting A. gracilipes. Queens with nodules had significantly fewer oocytes in their ovaries, but nodule presence was not associated with low ant population abundances. Although the microorganism responsible for the nodules is as yet unidentified, this is the first evidence of the presence of a pathogenic microorganism in the invasive ant A. gracilipes that may be affecting reproduction.


Subject(s)
Ants/physiology , Oocytes/physiology , Animals , Ants/microbiology , Female , Fertility/physiology , Northern Territory , Oocytes/microbiology , Oviposition , Reproduction/physiology
3.
Bull Entomol Res ; 105(2): 141-51, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25212433

ABSTRACT

The lack of biological knowledge of many invasive species remains as one of the greatest impediments to their management. Here I detail targeted research into the biology of the yellow crazy ant Anoplolepis gracilipes within northern Australia and detail how such knowledge can be used to improve the management outcomes for this species. I quantified nest location and density in three habitats, worker activity over 24 h, infestation expansion rate, seasonal variation of worker abundance and the timing of production of sexuals. Nests were predominantly (up to 68%) located at the bases of large trees, indicating that search efforts should focus around tree bases. Nest density was one nest per 22, 7.1 and 6.3 m2 in the three habitats, respectively. These data form the baselines for quantifying treatment efficacy and set sampling densities for post-treatment assessments. Most (60%) nests were underground, predominantly (89%) occurring in an open area rather than underneath a rock or log. Some seasonality was evident for nests within leaf litter, with most (83%) occurring during the 'wet season' (October-March). Of the underground nests, most were shallow, with 44% being less than 10 cm deep, and 67% being less than 20 cm deep. Such nest location and density information serves many management purposes, for improving detection, mapping and post-treatment assessments, and also provided strong evidence that carbohydrate supply was a major driver of A. gracilipes populations. Just over half of the nests (56%) contained queens. Of the 62 underground nests containing queens, most queens (80%) were located at the deepest chamber. When queens were present, most often (38%) only one queen was present, the most being 16. Queen number per nest was the lowest in July and August just prior to the emergence of virgin queens in September, with queen numbers then remaining steadily high until April. Nothing is known for any ant species about how the queen number per nest/colony affects treatment efficacy, but further research would no doubt yield important breakthroughs for treating ants. Activity occurred predominantly nocturnally, ceasing during mid-day. These activity data determined the critical threshold above which work must be conducted to be considered reliable, and also suggests that treatments are best applied in the afternoon. Total brood production peaked in February and was the lowest around August and September. These abundance data form the baselines for quantifying treatment efficacy, and may have implications for treatment efficacy. Males were found every month, predominantly between August and November. Queen pupae were found in September. The reproductive timing of sexuals determines the treatment schedule. Targeted, site-specific research such as that described here should be an integral part of any eradication program for invasive species to design knowledge-based treatment protocols and determine assessment benchmarks.


Subject(s)
Ants , Insect Control , Introduced Species , Nesting Behavior , Animals , Female , Male , Northern Territory , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...