Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38328145

ABSTRACT

Xenografting human cancer tissues into mice to test new cures against cancers is critical for understanding and treating the disease. However, only a few inbred strains of mice are used to study cancers, and derivatives of mainly one strain, mostly NOD/ShiLtJ, are used for therapy efficacy studies. As it has been demonstrated when human cancer cell lines or patient-derived tissues (PDX) are xenografted into mice, the neoplastic cells are human but the supporting cells that comprise the tumor (the stroma) are from the mouse. Therefore, results of studies of xenografted tissues are influenced by the host strain. We previously published that when the same neoplastic cells are xenografted into different mouse strains, the pattern of tumor growth, histology of the tumor, number of immune cells infiltrating the tumor, and types of circulating cytokines differ depending on the strain. Therefore, to better comprehend the behavior of cancer in vivo, one must xenograft multiple mouse strains. Here we describe and report a series of methods that we used to reveal the genes and proteins expressed when the same cancer cell line, MDA-MB-231, is xenografted in different hosts. First, using proteomic analysis, we show how to use the same cell line in vivo to reveal the protein changes in the neoplastic cell that help it adapt to its host. Then, we show how different hosts respond molecularly to the same cell line. We also find that using multiple strains can reveal a more suitable host than those traditionally used for a "difficult to xenograft" PDX. In addition, using complex trait genetics, we illustrate a feasible method for uncovering the alleles of the host that support tumor growth. Finally, we demonstrate that Diversity Outbred mice, the epitome of a model of mouse-strain genetic diversity, can be xenografted with human cell lines or PDX using 2-deoxy-D-glucose treatment.

2.
J Cardiovasc Dev Dis ; 10(8)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37623368

ABSTRACT

Organization of extracellular matrix (ECM) components, including collagens, proteoglycans, and elastin, is essential for maintaining the structure and function of heart valves throughout life. Mutations in ECM genes cause connective tissue disorders, including Osteogenesis Imperfecta (OI), and progressive debilitating heart valve dysfunction is common in these patients. Despite this, effective treatment options are limited to end-stage interventions. Mice with a homozygous frameshift mutation in col1a2 serve as a murine model of OI (oim/oim), and therefore, they were used in this study to examine the pathobiology of aortic valve (AoV) disease in this patient population at structural, functional, and molecular levels. Temporal echocardiography of oim/oim mice revealed AoV dysfunction by the late stages of disease in 12-month-old mice. However, structural and proteomic changes were apparent much earlier, at 3 months of age, and were associated with disturbances in ECM homeostasis primarily related to collagen and proteoglycan abnormalities and disorganization. Together, findings from this study provide insights into the underpinnings of late onset AoV dysfunction in connective tissue disease patients that can be used for the development of mechanistic-based therapies administered early to halt progression, thereby avoiding late-stage surgical intervention.

3.
Function (Oxf) ; 4(5): zqad031, 2023.
Article in English | MEDLINE | ID: mdl-37575482

ABSTRACT

In this study, novel methods were developed, which allowed continuous (24/7) measurement of arterial blood pressure and renal blood flow in freely moving rats and the intermittent collection of arterial and renal venous blood to estimate kidney metabolic fluxes of O2 and metabolites. Specifically, the study determined the effects of a high salt (HS; 4.0% NaCl) diet upon whole kidney O2 consumption and arterial and renal venous plasma metabolomic profiles of normal Sprague-Dawley rats. A separate group of rats was studied to determine changes in the cortex and outer medulla tissue metabolomic and mRNAseq profiles before and following the switch from a 0.4% to 4.0% NaCl diet. In addition, targeted mRNA expression analysis of cortical segments was performed. Significant changes in the metabolomic and transcriptomic profiles occurred with feeding of the HS diet. A progressive increase of kidney O2 consumption was found despite a reduction in expression of most of the mRNA encoding enzymes of TCA cycle. A novel finding was the increased expression of glycolysis-related genes in Cx and isolated proximal tubular segments in response to an HS diet, consistent with increased release of pyruvate and lactate from the kidney to the renal venous blood. Data suggests that aerobic glycolysis (eg, Warburg effect) may contribute to energy production under these circumstances. The study provides evidence that kidney metabolism responds to an HS diet enabling enhanced energy production while protecting from oxidative stress and injury. Metabolomic and transcriptomic analysis of kidneys of Sprague-Dawley rats fed a high salt diet.


Subject(s)
Sodium Chloride, Dietary , Sodium Chloride , Rats , Animals , Rats, Sprague-Dawley , Sodium Chloride, Dietary/metabolism , Sodium Chloride/metabolism , Blood Pressure , Kidney , RNA, Messenger
4.
bioRxiv ; 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36711564

ABSTRACT

In the present study, novel methods were developed which allowed continuous (24/7) measurement of blood pressure (BP) and renal blood flow (RBF) in freely moving rats and the intermittent collection of arterial and renal venous blood to estimate kidney metabolic fluxes of O 2 and metabolites. The study determined the effects of a high salt (HS) diet upon whole kidney O 2 consumption and the metabolomic profiles of normal Sprague Dawley (SD) rats. A separate group of rats was studied to determine changes in the cortex (Cx) and outer medulla (OM) tissue metabolomic and mRNAseq profiles before and following the switch from a 0.4% to a 4.0% NaCl diet. Significant changes in the metabolomic and transcriptomic profiles occurred with feeding of the HS diet. A progressive increase of kidney O 2 consumption was found despite a reduction in expression of most of the mRNA encoding enzymes of TCA cycle. Increased glycolysis was evident with the elevation of mRNA expression encoding key glycolytic enzymes and release of pyruvate and lactate from the kidney in the renal venous blood. Glycolytic production of NADH is used in either the production of lactate or oxidized via the malate aspartate shuttle. Aerobic glycolysis (e.g., Warburg-effect) may account for the needed increase in cellular energy. The study provides evidence that kidney metabolism responds to a HS diet enabling enhanced energy production while protecting from oxidate stress and injury.

5.
PLoS One ; 15(4): e0232067, 2020.
Article in English | MEDLINE | ID: mdl-32324784

ABSTRACT

The heptapeptide angiotensin-(1-7) (Ang-(1-7)) is protective in the cardiovascular system through its induction of vasodilator production and angiogenesis. Despite acting antagonistically to the effects of elevated, pathophysiological levels of angiotensin II (AngII), recent evidence has identified convergent and beneficial effects of low levels of both Ang-(1-7) and AngII. Previous work identified the AngII receptor type I (AT1R) as a component of the protein complex formed when Ang-(1-7) binds its receptor, Mas1. Importantly, pharmacological blockade of AT1R did not alter the effects of Ang-(1-7). Here, we use a novel mutation of AT1RA in the Dahl salt-sensitive (SS) rat to test the hypothesis that interaction between Mas1 and AT1R contributes to proangiogenic Ang-(1-7) signaling. In a model of hind limb angiogenesis induced by electrical stimulation, we find that the restoration of skeletal muscle angiogenesis in SS rats by Ang-(1-7) infusion is impaired in AT1RA knockout rats. Enhancement of endothelial cell (EC) tube formation capacity by Ang-(1-7) is similarly blunted in AT1RA mutant ECs. Transcriptional changes elicited by Ang-(1-7) in SS rat ECs are altered in AT1RA mutant ECs, and tandem mass spectrometry-based proteomics demonstrate that the protein complex formed upon binding of Ang-(1-7) to Mas1 is altered in AT1RA mutant ECs. Together, these data support the hypothesis that interaction between AT1R and Mas1 contributes to proangiogenic Ang-(1-7) signaling.


Subject(s)
Angiotensin I/metabolism , Muscle, Skeletal/blood supply , Peptide Fragments/metabolism , Proto-Oncogene Proteins/metabolism , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Electric Stimulation , Male , Mass Spectrometry , Models, Animal , Muscle, Skeletal/metabolism , Mutation , Neovascularization, Physiologic , Proteomics , Proto-Oncogene Mas , Rats , Rats, Inbred Dahl , Signal Transduction
6.
Kidney360 ; 1(10): 1105-1115, 2020 Oct.
Article in English | MEDLINE | ID: mdl-34263177

ABSTRACT

BACKGROUND: The 5/6 nephrectomy (5/6Nx) rat model recapitulates many elements of human CKD. Within weeks of surgery, 5/6Nx rats spontaneously exhibit proximal tubular damage, including the production of very large extracellular vesicles and brush border shedding. We hypothesized that production and elimination of these structures, termed large renal tubular extracellular vesicles (LRT-EVs), into the urine represents a pathologic mechanism by which essential tubule proteins are lost. METHODS: LRT-EVs were isolated from 5/6Nx rat urine 10 weeks after surgery. LRT-EV diameters were measured. LRT-EV proteomic analysis was performed by tandem mass spectrometry. Data are available via the ProteomeXchange Consortium with identifier PXD019207. Kidney tissue pathology was evaluated by trichrome staining, TUNEL staining, and immunohistochemistry. RESULTS: LRT-EV size and a lack of TUNEL staining in 5/6Nx rats suggest LRT-EVs to be distinct from exosomes, microvesicles, and apoptotic bodies. LRT-EVs contained many proximal tubule proteins that, upon disruption, are known to contribute to CKD pathologic hallmarks. Select proteins included aquaporin 1, 16 members of the solute carrier family, basolateral Na+/K+-ATPase subunit ATP1A1, megalin, cubilin, and sodium-glucose cotransporters (SLC5A1 and SLC5A2). Histologic analysis confirmed the presence of apical membrane proteins in LRT-EVs and brush border loss in 5/6Nx rats. CONCLUSIONS: This study provides comprehensive proteomic analysis of a previously unreported category of extracellular vesicles associated with chronic renal stress. Because LRT-EVs contain proteins responsible for essential renal functions known to be compromised in CKD, their formation and excretion may represent an underappreciated pathogenic mechanism.


Subject(s)
Exosomes , Extracellular Vesicles , Renal Insufficiency, Chronic , Animals , Extracellular Vesicles/chemistry , Kidney/metabolism , Proteomics , Rats , Renal Insufficiency, Chronic/metabolism
7.
Front Physiol ; 10: 558, 2019.
Article in English | MEDLINE | ID: mdl-31133884

ABSTRACT

Hyperglycemia is a critical factor in the development of endothelial dysfunction in type 2 diabetes mellitus (T2DM). Whether hyperglycemic states result in a disruption of similar molecular mechanisms in endothelial cells under both diabetic and non-diabetic states, remains largely unknown. This study aimed to address this gap in knowledge through molecular and functional characterization of primary rat cardiac microvascular endothelial cells (RCMVECs) derived from the T2DM Goto-Kakizaki (GK) rat model in comparison to control Wistar-Kyoto (WKY) in response to a normal (NG) and hyperglycemic (HG) microenvironment. GK and WKY RCMVECs were cultured under NG (4.5 mM) and HG (25 mM) conditions for 3 weeks, followed by tandem mass spectrometry (MS/MS), qPCR, tube formation assay, microplate based fluorimetry, and mitochondrial respiration analyses. Following database matching and filtering (false discovery rate ≤ 5%, scan count ≥ 10), we identified a greater percentage of significantly altered proteins in GK (7.1%, HG versus NG), when compared to WKY (3.5%, HG versus NG) RCMVECs. Further stringent filters (log2ratio of > 2 or < -2, p < 0.05) followed by enrichment and pathway analyses of the MS/MS and quantitative PCR datasets (84 total genes screened), resulted in the identification of several molecular targets involved in angiogenic, redox and metabolic functions that were distinctively altered in GK as compared to WKY RCMVECs following HG exposure. While the expression of thirteen inflammatory and apoptotic genes were significantly increased in GK RCMVECs under HG conditions (p < 0.05), only 2 were significantly elevated in WKY RCMVECs under HG conditions. Several glycolytic enzymes were markedly reduced and pyruvate kinase activity was elevated in GK HG RCMVECs, while in mitochondrial respiratory chain activity was altered. Supporting this, TNFα and phorbol ester (PMA)-induced Reactive Oxygen Species (ROS) production were significantly enhanced in GK HG RCMVECs when compared to baseline levels (p < 0.05). Additionally, PMA mediated increase was the greatest in GK HG RCMVECs (p < 0.05). While HG caused reduction in tube formation assay parameters for WKY RCMVECs, GK RCMVECs exhibited impaired phenotypes under baseline conditions regardless of the glycemic microenvironment. We conclude that hyperglycemic microenvironment caused distinctive changes in the bioenergetics and REDOX pathways in the diabetic endothelium as compared to those observed in a healthy endothelium.

8.
Urolithiasis ; 47(6): 521-532, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30993355

ABSTRACT

Urine proteins are thought to control calcium oxalate stone formation, but over 1000 proteins have been reported in stone matrix obscuring their relative importance. Proteins critical to stone formation should be present at increased relative abundance in stone matrix compared to urine, so quantitative protein distribution data were obtained for stone matrix compared to prior urine proteome data. Matrix proteins were isolated from eight stones (> 90% calcium oxalate content) by crystal dissolution and further purified by ultradiafiltration (> 10 kDa membrane). Proteomic analyses were performed using label-free spectral counting tandem mass spectrometry, followed by stringent filtering. The average matrix proteome was compared to the average urine proteome observed in random urine samples from 25 calcium oxalate stone formers reported previously. Five proteins were prominently enriched in matrix, accounting for a mass fraction of > 30% of matrix protein, but only 3% of urine protein. Many highly abundant urinary proteins, like albumin and uromodulin, were present in matrix at reduced relative abundance compared to urine, likely indicating non-selective inclusion in matrix. Furthermore, grouping proteins by isoelectric point demonstrated that the stone matrix proteome was highly enriched in both strongly anionic (i.e., osteopontin) and strongly cationic (i.e., histone) proteins, most of which are normally found in intracellular or nuclear compartments. The fact that highly anionic and highly cationic proteins aggregate at low concentrations and these aggregates can induce crystal aggregation suggests that protein aggregation may facilitate calcium oxalate stone formation, while cell injury processes are implicated by the presence of many intracellular proteins.


Subject(s)
Calcium Oxalate/metabolism , Kidney Calculi/etiology , Proteome/metabolism , Urinary Calculi/etiology , Calcium Oxalate/analysis , Crystallization , Humans , Kidney Calculi/chemistry
9.
Urolithiasis ; 45(4): 337-346, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28314883

ABSTRACT

Many urine proteins are found in calcium oxalate stones, yet decades of research have failed to define the role of urine proteins in stone formation. This urine proteomic study compares the relative amounts of abundant urine proteins between idiopathic calcium oxalate stone forming and non-stone forming (normal) cohorts to identify differences that might correlate with disease. Random mid-morning urine samples were collected following informed consent from 25 stone formers and 14 normal individuals. Proteins were isolated from urine using ultrafiltration. Urine proteomes for each sample were characterized using label-free spectral counting mass spectrometry, so that urine protein relative abundances could be compared between the two populations. A total of 407 unique proteins were identified with the 38 predominant proteins accounting for >82% of all sample spectral counts. The most highly abundant proteins were equivalent in stone formers and normals, though significant differences were observed in a few moderate abundance proteins (immunoglobulins, transferrin, and epidermal growth factor), accounting for 13 and 10% of the spectral counts, respectively. These proteins contributed to a cationic shift in protein distribution in stone formers compared to normals (22% vs. 18%, p = 0.04). Our data showing only small differences in moderate abundance proteins suggest that no single protein controls stone formation. Observed increases in immunoglobulins and transferrin suggest increased inflammatory activity in stone formers, but cannot distinguish cause from effect in stone formation. The observed cationic shift in protein distribution would diminish protein charge stabilization, which could lead to protein aggregation and increased risk for crystal aggregation.


Subject(s)
Calcium Oxalate/metabolism , Cations/metabolism , Proteome/metabolism , Urinary Calculi/pathology , Urine/chemistry , Adult , Computational Biology , Epidermal Growth Factor/metabolism , Female , Humans , Immunoglobulins/metabolism , Male , Mass Spectrometry/methods , Middle Aged , Protein Aggregation, Pathological/pathology , Proteomics/methods , Transferrin/metabolism , Ultrafiltration
10.
Am J Physiol Heart Circ Physiol ; 312(5): H1096-H1104, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28213406

ABSTRACT

To examine the effect of endothelium-derived extracellular vesicles (eEVs) on the mediator of flow-induced dilation (FID), composition, formation, and functional effects on the mediator of FID were examined from two different eEV subtypes, one produced from ceramide, while the other was produced from plasminogen-activator inhibitor 1 (PAI-1). Using video microscopy, we measured internal-diameter changes in response to increases in flow in human adipose resistance arteries acutely exposed (30 min) to eEVs derived from cultured endothelial cells exposed to ceramide or PAI-1. FID was significantly impaired following exposure to 500K/ml (K = 1,000) of ceramide-induced eEVs (Cer-eEVs) but unaffected by 250K/ml. FID was reduced in the presence of PEG-catalase following administration of 250K/ml of Cer-eEVs and PAI-1 eEVs, whereas Nω-nitro-l-arginine methyl ester (l-NAME) had no effect. Pathway analysis following protein composition examination using liquid chromatography tandem mass spectrometry (LC-MS/MS) demonstrated that both subtypes were strongly linked to similar biological functions, primarily, mitochondrial dysfunction. Flow cytometry was used to quantify eEVs in the presence or absence of l-phenylalanine-4'-boronic acid (PBA) and mitochondria-targeted [93-boronophenyl)methyl]triphenyl-phosphonium (mito-PBA), cytosolic and mitochondrial-targeted antioxidants, respectively. eEV formation was significantly and dramatically reduced with mito-PBA treatment. In conclusion, eEVs have a biphasic effect, with higher doses impairing and lower doses shifting the mediator of FID from nitric oxide (NO) to hydrogen peroxide (H2O2). Despite differences in protein content, eEVs may alter vascular function in similar directions, regardless of the stimulus used for their formation. Furthermore, mitochondrial ROS production is required for the generation of these vesicles.NEW & NOTEWORTHY The vascular effect of endothelium-derived extracellular vesicles (eEVs) is biphasic, with higher doses decreasing the magnitude of flow-induced dilation (FID) compared with lower doses that shift the mediator of FID from nitric oxide to H2O2 eEVs may cause vascular dysfunction via similar pathways despite being formed from different stimuli, although both require mitochondrial reactive oxygen species for their formation.


Subject(s)
Arterioles/physiology , Blood Flow Velocity/physiology , Endothelium, Vascular/physiology , Extracellular Vesicles/physiology , Mitochondria/physiology , Vasodilation/physiology , Adipose Tissue/blood supply , Adipose Tissue/physiology , Female , Humans , In Vitro Techniques , Male , Middle Aged
11.
Arterioscler Thromb Vasc Biol ; 37(3): 433-445, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28082260

ABSTRACT

OBJECTIVE: Angiotensin II (AngII) has been shown to regulate angiogenesis and at high pathophysiological doses to cause vasoconstriction through the AngII receptor type 1. Angiotensin 1 to 7 (Ang-(1-7)) acting through the Mas1 receptor can act antagonistically to high pathophysiological levels of AngII by inducing vasodilation, whereas the effects of Ang-(1-7) signaling on angiogenesis are less defined. To complicate the matter, there is growing evidence that a subpressor dose of AngII produces phenotypes similar to Ang-(1-7). APPROACH AND RESULTS: This study shows that low-dose Ang-(1-7), acting through the Mas1 receptor, promotes angiogenesis and vasodilation similar to a low, subpressor dose of AngII acting through AngII receptor type 1. In addition, we show through in vitro tube formation that Ang-(1-7) augments the angiogenic response in rat microvascular endothelial cells. Using proteomic and genomic analyses, downstream components of Mas1 receptor signaling were identified, including Rho family of GTPases, phosphatidylinositol 3-kinase, protein kinase D1, mitogen-activated protein kinase, and extracellular signal-related kinase signaling. Further experimental antagonism of extracellular signal-related kinases 1/2 and p38 mitogen-activated protein kinase signaling inhibited endothelial tube formation and vasodilation when stimulated with equimolar, low doses of either AngII or Ang-(1-7). CONCLUSIONS: These results significantly expand the known Ang-(1-7)/Mas1 receptor signaling pathway and demonstrate an important distinction between the pathological effects of elevated and suppressed AngII compared with the beneficial effects of AngII normalization and Ang-(1-7) administration. The observed convergence of Ang-(1-7)/Mas1 and AngII/AngII receptor type 1 signaling at low ligand concentrations suggests a nuanced regulation in vasculature. These data also reinforce the importance of mitogen-activated protein kinase/extracellular signal-related kinase signaling in maintaining vascular function.


Subject(s)
Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Middle Cerebral Artery/metabolism , Neovascularization, Physiologic , Proto-Oncogene Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Vasodilation , Angiotensin I/pharmacology , Angiotensin II/pharmacology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Dose-Response Relationship, Drug , Electric Stimulation , Endothelial Cells/drug effects , Endothelium, Vascular/drug effects , Endothelium, Vascular/innervation , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation , Male , Middle Cerebral Artery/drug effects , Middle Cerebral Artery/innervation , Neovascularization, Physiologic/drug effects , Peptide Fragments/pharmacology , Proto-Oncogene Mas , Proto-Oncogene Proteins/agonists , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 1/drug effects , Receptor, Angiotensin, Type 1/metabolism , Receptors, G-Protein-Coupled/agonists , Signal Transduction/drug effects , Signal Transduction/genetics , Vasodilation/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
12.
Behav Brain Res ; 322(Pt B): 288-298, 2017 03 30.
Article in English | MEDLINE | ID: mdl-27265785

ABSTRACT

Alzheimer's disease (AD), the most common form of dementia in the elderly, has no cure. Thus, the identification of key molecular mediators of cognitive decline in AD remains a top priority. As aging is the most significant risk factor for AD, the goal of this study was to identify altered proteins and pathways associated with the development of normal aging and AD memory deficits, and identify unique proteins and pathways that may contribute to AD-specific symptoms. We used contextual fear conditioning to diagnose 8-month-old 5XFAD and non-transgenic (Ntg) mice as having either intact or impaired memory, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantify hippocampal membrane proteins across groups. Subsequent analysis detected 113 proteins differentially expressed relative to memory status (intact vs impaired) in Ntg mice and 103 proteins in 5XFAD mice. Thirty-six proteins, including several involved in neuronal excitability and synaptic plasticity (e.g., GRIA1, GRM3, and SYN1), were altered in both normal aging and AD. Pathway analysis highlighted HDAC4 as a regulator of observed protein changes in both genotypes and identified the REST epigenetic regulatory pathway and Gi intracellular signaling as AD-specific pathways involved in regulating the onset of memory deficits. Comparing the hippocampal membrane proteome of Ntg versus AD, regardless of cognitive status, identified 138 differentially expressed proteins, including confirmatory proteins APOE and CLU. Overall, we provide a novel list of putative targets and pathways with therapeutic potential, including a set of proteins associated with cognitive status in normal aging mice or gene mutations that cause AD.


Subject(s)
Aging/metabolism , Aging/psychology , Alzheimer Disease/metabolism , Hippocampus/metabolism , Memory Disorders/metabolism , Proteome , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Chromatography, Liquid , Conditioning, Psychological , Disease Models, Animal , Fear , Humans , Memory/physiology , Mice, Transgenic , Presenilin-1/genetics , Presenilin-1/metabolism , Proteomics , Psychological Tests , Resilience, Psychological , Tandem Mass Spectrometry
13.
Stem Cells ; 34(7): 1922-33, 2016 07.
Article in English | MEDLINE | ID: mdl-26867147

ABSTRACT

Shortly after the discovery of endothelial progenitor cells (EPCs) in 1997, many clinical trials were conducted using EPCs as a cellular based therapy with the goal of restoring damaged organ function by inducing growth of new blood vessels (angiogenesis). Results were disappointing, largely because the cellular and molecular mechanisms of EPC-induced angiogenesis were not clearly understood. Following injection, EPCs must migrate to the target tissue and engraft prior to induction of angiogenesis. In this study EPC migration was investigated in response to tumor necrosis factor α (TNFα), a pro-inflammatory cytokine, to test the hypothesis that organ damage observed in ischemic diseases induces an inflammatory signal that is important for EPC homing. In this study, EPC migration and incorporation were modeled in vitro using a coculture assay where TNFα treated EPCs were tracked while migrating toward vessel-like structures. It was found that TNFα treatment of EPCs increased migration and incorporation into vessel-like structures. Using a combination of genomic and proteomic approaches, NF-kB mediated upregulation of CADM1 was identified as a mechanism of TNFα induced migration. Inhibition of NF-kB or CADM1 significantly decreased migration of EPCs in vitro suggesting a role for TNFα signaling in EPC homing during tissue repair. Stem Cells 2016;34:1922-1933.


Subject(s)
Cell Adhesion Molecule-1/metabolism , Cell Movement , Endothelial Progenitor Cells/cytology , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Amino Acid Sequence , Animals , Cell Adhesion Molecule-1/chemistry , Cell Adhesion Molecule-1/genetics , Chromatography, Liquid , Electric Stimulation , Endothelial Progenitor Cells/metabolism , Gene Knockdown Techniques , Membrane Proteins/metabolism , Neovascularization, Physiologic , Rats, Sprague-Dawley , Receptors, Tumor Necrosis Factor/metabolism , Signal Transduction , Tandem Mass Spectrometry
14.
Physiol Rep ; 3(4)2015 Apr.
Article in English | MEDLINE | ID: mdl-25921777

ABSTRACT

Endothelial progenitor cells (EPCs) are bone-marrow-derived mononuclear cells that participate in tube formation in vitro and vessel formation in vivo. EPC transplantation, as a therapeutic approach in cardiovascular diseases, has produced mixed results likely due to underlying disease states and environmental factors affecting EPC function. In this study, we investigated the mechanisms by which a high-salt diet impairs EPC function. The number of endothelial progenitor cells (CD34(+), VEGFR2(+), CD133(+), and c-Kit(+)) was decreased in the bone marrow of Sprague-Dawley (SD) rats fed a high-salt diet (HSD; 4% NaCl) as compared to SD rats on a normal-salt diet (NSD; 0.4% NaCl). NSD EPCs augmented endothelial cell tube formation in vitro, whereas HSD EPCs did not. NSD EPCs were a potent therapeutic restoring electrical stimulation-induced angiogenesis in vivo. HSD EPCs were not able to restore angiogenesis in vivo. EPC DNA methylation was analyzed by reduced representative bisulfite sequencing and membrane proteins were analyzed using high accuracy liquid chromatography mass spectrometry. Differentially methylated genes and differentially abundant membrane proteins measured between the NSD and HSD EPCs, revealed a total of 886 gene-protein sets where reciprocal methylation and expression occurred. Based on stringent criteria, Notch4 was found to be hypermethylated in HSD EPCs and had corresponding decrease in protein expression. Suppression of Notch4 protein expression in EPCs using siRNA confirmed a role for Notch4 in EPC-mediated angiogenesis, suggesting Notch4 suppression as a mechanism by which high-salt diet inhibits EPC-mediated angiogenesis.

15.
PLoS One ; 9(4): e94599, 2014.
Article in English | MEDLINE | ID: mdl-24718615

ABSTRACT

OBJECTIVE: Diabetes Mellitus (DM) has reached epidemic levels globally. A contributing factor to the development of DM is high blood glucose (hyperglycemia). One complication associated with DM is a decreased angiogenesis. The Matrigel tube formation assay (TFA) is the most widely utilized in vitro assay designed to assess angiogenic factors and conditions. In spite of the widespread use of Matrigel TFAs, quantification is labor-intensive and subjective, often limiting experiential design and interpretation of results. This study describes the development and validation of an open source software tool for high throughput, morphometric analysis of TFA images and the validation of an in vitro hyperglycemic model of DM. APPROACH AND RESULTS: Endothelial cells mimic angiogenesis when placed onto a Matrigel coated surface by forming tube-like structures. The goal of this study was to develop an open-source software algorithm requiring minimal user input (Pipeline v1.3) to automatically quantify tubular metrics from TFA images. Using Pipeline, the ability of endothelial cells to form tubes was assessed after culture in normal or high glucose for 1 or 2 weeks. A significant decrease in the total tube length and number of branch points was found when comparing groups treated with high glucose for 2 weeks versus normal glucose or 1 week of high glucose. CONCLUSIONS: Using Pipeline, it was determined that hyperglycemia inhibits formation of endothelial tubes in vitro. Analysis using Pipeline was more accurate and significantly faster than manual analysis. The Pipeline algorithm was shown to have additional applications, such as detection of retinal vasculature.


Subject(s)
Endothelial Cells/pathology , Hyperglycemia/pathology , Neovascularization, Physiologic , Algorithms , Animals , Automation , Computer Simulation , Microvessels/pathology , Myocardium/pathology , Publications , Rats , Retinal Vessels/pathology , User-Computer Interface
16.
Physiol Genomics ; 45(21): 999-1011, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24022221

ABSTRACT

Endothelial progenitor cells (EPCs) promote angiogenesis, and clinical trials suggest autologous EPC-based therapy may be effective in treatment of vascular diseases. Albeit promising, variability in the efficacy of EPCs associated with underlying disease states has hindered the realization of EPC-based therapy. Here we first identify and characterize EPC dysfunction in a rodent model of vascular disease (SS/Mcwi rat) that exhibits impaired angiogenesis. To identify molecular candidates that mediate the angiogenic potential of these cells, we performed a broad analysis of cell surface protein expression using chemical labeling combined with mass spectrometry. Analysis revealed EPCs derived from SS/Mcwi rats express significantly more type 2 low-affinity immunoglobulin Fc-gamma (FCGR2) and natural killer 2B4 (CD244) receptors compared with controls. Genome-wide sequencing (RNA-seq) and qt-PCR confirmed isoforms of CD244 and FCGR2a transcripts were increased in SS/Mcwi EPCs. EPCs with elevated expression of FCGR2a and CD244 receptors are predicted to increase the probability of SS/Mcwi EPCs being targeted for death, providing a mechanistic explanation for their reduced angiogenic efficacy in vivo. Pathway analysis supported this contention, as "key" molecules annotated to cell death paths were differentially expressed in the SS/Mcwi EPCs. We speculate that screening and neutralization of cell surface proteins that "tag" and impair EPC function may provide an alternative approach to utilizing incompetent EPCs in greater numbers, as circulating EPCs are depleted in patients with vascular disease. Overall, novel methods to identify putative targets for repair of EPCs using discovery-based technologies will likely provide a major advance in the field of regenerative medicine.


Subject(s)
Endothelial Cells/metabolism , Membrane Proteins/metabolism , Neovascularization, Physiologic/physiology , Proteome/metabolism , Stem Cells/metabolism , Vascular Diseases/physiopathology , Animals , Antigens, CD34/genetics , Antigens, CD34/metabolism , Cells, Cultured , Electric Stimulation , Endothelial Cells/cytology , Endothelial Cells/transplantation , Flow Cytometry , Humans , Mass Spectrometry , Membrane Proteins/genetics , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Neovascularization, Physiologic/genetics , Proteome/genetics , Rats , Rats, Inbred BN , Rats, Inbred Dahl , Reverse Transcriptase Polymerase Chain Reaction , Species Specificity , Stem Cell Transplantation/methods , Stem Cells/cytology , Transcriptome/genetics , Vascular Diseases/genetics , Vascular Diseases/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
17.
Physiol Genomics ; 45(21): 1021-34, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24022223

ABSTRACT

Bone marrow-derived endothelial progenitor cells (BM-EPCs) are stimulated by vascular endothelial growth factor-A (VEGF-A) and other potent proangiogenic factors. During angiogenesis, an increase in VEGF-A expression stimulates BM-EPCs to enhance endothelial tube formation and contribute to an increase in microvessel density. Hypoxia is known to produce an enhanced angiogenic response and heightened levels of VEGF-A have been seen in oxygen deprived epithelial and endothelial cells, yet the pathways for VEGF-A signaling in BM-EPCs have not been described. This study explores the influence of hypoxia on VEGF-A signaling in rat BM-EPCs utilizing a novel proteomic strategy to directly identify interacting downstream components of the combined VEGF receptor(s) signaling pathways, gene expression analysis, and functional phenotyping. VEGF-A signaling network analysis following liquid chromatographic separation and tandem mass spectrometry revealed proteins related to inositol/calcium signaling, nitric oxide signaling, cell survival, cell migration, and inflammatory responses. Alterations in BM-EPC expression of common angiogenic genes and tube formation in response to VEGF-A during hypoxia were measured and combined with the proteomic analysis to enhance and support the signaling pathways detected. BM-EPC tube formation assays in response to VEGF-A exhibited little tube formation; however, a cell projection/migratory phenotype supported the signaling data. Additionally, a novel assay measuring BM-EPC incorporation into preformed endothelial cell tubes indicated a significant increase of incorporated BM-EPCs after pretreatment with VEGF-A during hypoxia. This study verifies known VEGF-A pathway components and reveals several unidentified mechanisms of VEGF-A signaling in BM-EPCs during hypoxia that may be important for migration to sites of vascular regeneration.


Subject(s)
Bone Marrow Cells/metabolism , Endothelial Cells/metabolism , Signal Transduction/genetics , Stem Cells/metabolism , Vascular Endothelial Growth Factor A/genetics , Animals , Bone Marrow Cells/cytology , Cell Hypoxia , Cell Movement/genetics , Cell Survival/genetics , Cells, Cultured , Chromatography, High Pressure Liquid , Endothelial Cells/cytology , Gene Expression Regulation/drug effects , Mass Spectrometry/methods , Models, Genetic , Neovascularization, Physiologic/genetics , Peptide Fragments/pharmacology , Proteomics/methods , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Stem Cells/cytology , Stress, Physiological/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
18.
J Med Chem ; 55(19): 8260-71, 2012 Oct 11.
Article in English | MEDLINE | ID: mdl-22970990

ABSTRACT

Drugs exert desired and undesired effects based on their binding interactions with protein target(s) and off-target(s), providing evidence for drug efficacy and toxicity. Pioglitazone and rosiglitazone possess a common functional core, glitazone, which is considered a privileged scaffold upon which to build a drug selective for a given target--in this case, PPARγ. Herein, we report a retrospective analysis of two variants of the glitazone scaffold, pioglitazone and rosiglitazone, in an effort to identify off-target binding events in the rat heart to explain recently reported cardiovascular risk associated with these drugs. Our results suggest that glitazone has affinity for dehydrogenases, consistent with known binding preferences for related rhodanine cores. Both drugs bound ion channels and modulators, with implications in congestive heart failure, arrhythmia, and peripheral edema. Additional proteins involved in glucose homeostasis, synaptic transduction, and mitochondrial energy production were detected and potentially contribute to drug efficacy and cardiotoxicity.


Subject(s)
Hypoglycemic Agents/chemistry , Myocardium/chemistry , Proteome/chemistry , Thiazolidinediones/chemistry , Animals , Chromatography, Affinity , Gluconeogenesis , Glycolysis , Hypoglycemic Agents/toxicity , Ion Channels/chemistry , Ion Channels/metabolism , Lipid Metabolism , Mitochondria/physiology , Myocardium/metabolism , Oxidoreductases/metabolism , Pioglitazone , Protein Binding , Proteome/metabolism , Proteomics , Rats , Rosiglitazone , Synaptic Transmission , Thiazolidinediones/toxicity
19.
PLoS One ; 7(3): e32762, 2012.
Article in English | MEDLINE | ID: mdl-22403705

ABSTRACT

Thrombospondin-1 (TSP-1) is known to be subject to three unusual carbohydrate modifications: C-mannosylation, O-fucosylation, and O-glucosylation. We now describe a fourth: O-ß-N-acetylglucosaminylation. Previously, O-ß-N-acetylglucosamine (O-ß-GlcNAc) was found on a threonine in the loop between the fifth and sixth cysteines of the 20(th) epidermal growth factor (EGF)-like module of Drosophila Notch. A BLAST search based on the Drosophila Notch loop sequence identified a number of human EGF-like modules that contain a similar sequence, including EGF-like module 1 of TSP-1 and its homolog, TSP-2. TSP-1, which has a potentially modifiable serine in the loop, reacted in immuno-blots with the CTD110.6 anti-O-GlcNAc antibody. Antibody reactivity was diminished by treatment of TSP-1 with ß-N-acetylhexosaminidase. TSP-2, which lacks a potentially modifiable serine/threonine in the loop, did not react with CTD110.6. Analysis of tandem modules of TSP-1 localized reactivity of CTD110.6 to EGF-like module 1. Top-down mass spectrometric analysis of EGF-like module 1 demonstrated the expected modifications with glucose (+162 Da) and xylose (+132 Da) separately from modification with N-acetyl hexosamine (+203 Da). Mass spectrometric sequence analysis localized the +203-Da modification to Ser580 in the sequence (575)CPPGYSGNGIQC(586). These results demonstrate that O-ß-N-acetylglucosaminylation can occur on secreted extracellular matrix proteins as well as on cell surface proteins.


Subject(s)
Acetylglucosamine/chemistry , Acetylglucosamine/metabolism , Epidermal Growth Factor/chemistry , Extracellular Space/metabolism , Oxygen , Thrombospondin 1/chemistry , Thrombospondin 1/metabolism , Amino Acid Sequence , Animals , Consensus Sequence , Drosophila melanogaster , Humans , Molecular Sequence Data , Sequence Analysis, DNA
20.
J Biol Chem ; 286(37): 32220-30, 2011 Sep 16.
Article in English | MEDLINE | ID: mdl-21757696

ABSTRACT

Transglutaminase 2 (TG2) is secreted by a non-classical pathway into the extracellular space, where it has several activities pertinent to fibronectin (FN), including binding to the gelatin-binding domain of FN and acting as an integrin co-receptor. Glutamines in the N-terminal tail of FN are known to be susceptible to transamidation by both TG2 and activated blood coagulation factor XIII (FXIIIa). We used immunoblotting, limited proteolysis, and mass spectrometry to localize glutamines within FN that are subject to TG2-catalyzed incorporation of dansylcadaverine in comparison to residues modified by FXIIIa. Such analysis of plasma FN indicated that Gln-3, Gln-7, and Gln-9 in the N-terminal tail and Gln-246 of the linker between fifth and sixth type I modules ((5)F1 and (6)F1) are transamidated by both enzymes. Only minor incorporation of dansylcadaverine was detected elsewhere. Labeling of C-terminally truncated FN constructs revealed efficient TG2- or FXIIIa-catalyzed dansylcadaverine incorporation into the N-terminal residues of constructs as small as the 29-kDa fragment that includes (1-5)F1 and lacks modules from the adjacent gelatin-binding domain. However, when only (1-3)F1 were present, dansylcadaverine incorporation into the N-terminal residues of FN was lost and instead was in the enzymes, near the active site of TG2 and terminal domains of FXIIIa. Thus, these results demonstrate that FXIIIa and TG2 act similarly on glutamines at either end of (1-5)F1 and transamidation specificity of both enzymes is achieved through interactions with the intact 29K fragment.


Subject(s)
Factor XIIIa/metabolism , Fibronectins/metabolism , Glutamine/metabolism , Protein Processing, Post-Translational/physiology , Transglutaminases/metabolism , Catalytic Domain , Factor XIIIa/chemistry , Factor XIIIa/genetics , Fibronectins/chemistry , Fibronectins/genetics , GTP-Binding Proteins , Glutamine/chemistry , Glutamine/genetics , Humans , Protein Glutamine gamma Glutamyltransferase 2 , Protein Structure, Tertiary , Transglutaminases/chemistry , Transglutaminases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...