Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1216(7): 1157-66, 2009 Feb 13.
Article in English | MEDLINE | ID: mdl-19144343

ABSTRACT

Novel chiral stationary phases (CSPs) based on zwitterionic Cinchona alkaloid-type low-molecular mass chiral selectors (SOs), as they have been reported recently, were investigated in HPLC towards effects on their chromatographic behavior by mobile phase composition. Mobile phase characteristics like acid-to-base ratio and type of acidic and basic additives as well as effect of type of bulk solvents in nonaqueous polar organic and aqueous reversed-phase (RP) eluent systems were varied in order to illustrate the variability and applicability of zwitterionic CSPs with regard to mobile phase aspects. Chiral SOs of the five zwitterionic CSPs investigated herein contained weak and strong cation-exchange (WCX, SCX) sites at C9- and C6'-positions of the Cinchona alkaloid scaffold which itself accommodated the weak anion-exchange (WAX) site. The study focused on zwitterion-exchange (ZX) operational mode and chiral amino acids as target analytes. Besides, also the anion-exchange (AX) mode for chiral N-blocked amino acid analytes was considered, because of the intramolecular counterion (IMCI) property available in AX mode. Overall, most general and successful conditions in ZX mode were found to be weakly acidic methanolic mobile phases. In aqueous eluents RP contributions to retention came into play but only at low organic modifier content because of the highly polar character of zwitterionic analytes. At higher acetonitrile content, HILIC-related retention phenomena were observed. When using weakly basic eluent system in AX mode remarkably fast enantiomer separations involving exclusion phenomena were possible with one enantiomer eluting before and the other after void volume.


Subject(s)
Chromatography, Ion Exchange/methods , Models, Chemical , Quinine/chemistry , Acetonitriles , Amino Acids/chemistry , Hydrogen-Ion Concentration , Methanol , Osmolar Concentration , Stereoisomerism
2.
J Chromatogr A ; 1216(7): 1147-56, 2009 Feb 13.
Article in English | MEDLINE | ID: mdl-19144346

ABSTRACT

The concept of recently introduced Cinchona alkaloid-type zwitterionic chiral stationary phases (CSPs) is based on fusing key cation- and anion-exchange (CX, AX) moieties in one single low-molecular mass chiral selector (SO) with the resulting CSPs allowing enantiomer separations of a wide range of chiral ionizable analytes comprising acids, bases, and zwitterionic compounds. Herein, we report principal, systematic investigations of the ion-exchange-type retention mechanisms available with the novel zwitterionic CSPs in nonaqueous polar organic mode. Typical CX and AX processes, corresponding to the parent single ion exchangers, are confirmed also for zwitterionic CSPs. Also the mechanism leading to recognition and retention of zwitterions was found to be ion exchange mediated in a zwitterion-exchange (ZX) mode. In both AX and CX modes the additional ionizable group within the SO besides the site responsible for the respective ion-exchange process could be characterized as an intramolecular counterion (IMCI) that effectively participates in the ion-exchange equilibria and thus, contributes to solute elution. In the ZX mode both oppositely charged groups of the zwitterionic SO were found not only to be the sites for simultaneous ion pairing with the analyte but also functioned as IMCIs at the same time. The main practical consequences of the IMCI feature were significant reduction of the amounts and even elimination of acidic and basic additives required in the eluent systems to afford analyte elution while still providing faster analysis than the parent single ion-exchanger-type CSPs. The set of ten structurally different zwitterionic CSPs employed in this study facilitated the establishment of correlations between chromatographic behavior of the CSPs with particular SO elements, thereby supporting the understanding of the working principles of these novel packing materials on a molecular level.


Subject(s)
Chromatography, Ion Exchange/methods , Models, Chemical , Quinine/chemistry , Amino Acids/chemistry , Hydrogen-Ion Concentration , Stereoisomerism
3.
Anal Bioanal Chem ; 393(4): 1257-65, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19107468

ABSTRACT

A recently reported chiral strong cation exchanger (cSCX) type stationary phase was investigated for the LC separation of a series of Cinchona alkaloids and synthetic derivatives thereof to test its usefulness as alternative methodology for the separation of those important pharmaceuticals. The cSCX column-packing material was qualitatively compared on the one hand against a commercially available non-enantioselective SCX-material, PolySulfoethyl-A, and, on the other hand, against a modern C18 reversed-phase stationary phase which is commonly employed for Cinchona alkaloid analysis. Both SCX columns showed no pronounced peak-tailing phenomena which typically hamper Cinchona alkaloid RP analysis and require specific optimization. Thus, the cSCX-based assay provided new feasibilities for the separation of the Cinchona alkaloids in polar organic mode as opposed to conventional reversed-phase methodologies. In particular, a method for the simultaneous determination of eight Cinchona alkaloids (quinine, quinidine, cinchonine, cinchonidine, and their corresponding dihydro analogs) using the cSCX column in HPLC has been developed and exemplarily applied to impurity profiling of a commercial alkaloid sample. Furthermore, both SCX materials allowed successful separation of C9-epi and 10,11-didehydro derivatives from their respective educts in an application in synthetic Cinchona alkaloid chemistry.


Subject(s)
Cation Exchange Resins , Chromatography, High Pressure Liquid/instrumentation , Chromatography, Ion Exchange/instrumentation , Cinchona Alkaloids/isolation & purification , Quality Control , Sensitivity and Specificity
4.
Anal Chem ; 80(22): 8780-9, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-18855417

ABSTRACT

In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination.


Subject(s)
Amines/chemistry , Amines/isolation & purification , Amino Acids/chemistry , Amino Acids/isolation & purification , Alkaloids/chemistry , Chromatography, High Pressure Liquid , Dipeptides/chemistry , Dipeptides/isolation & purification , Stereoisomerism , Substrate Specificity , Sulfonic Acids/chemistry
5.
J Sep Sci ; 31(16-17): 3065-78, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18428190

ABSTRACT

A monolithic silica stationary phase functionalized with an enantioselective strong cation exchanger based on an aminosulfonic acid derivative was used for chiral separations of basic test solutes by nonaqueous CEC and capillary LC. The effects of the applied electric field as well as the ionic strength in the eluent on electrokinetic and chromatographic contributions to the overall separation performance in the electrically driven mode were investigated. Hence, under the utilized experimental conditions, i. e., at an electric field strength in the range of approximately 120-720 V/cm (applied voltages 4-24 kV) and an ionic strength of the counterion between 5 and 25 mM (at constant acid-to-base, i. e., co- to counterion ratio of 2:1), no deviations from the expected linearity of the EOF were observed. This led to the conclusion that an occurrence of the so-called electrokinetic effects of the second kind resulting from electric double layer overlap inside the mesopores of the monolithic stationary phase and concentration polarization phenomena were largely negligible. Additional support to this conclusion was inferred from the observed independence of CEC retention factors on the electric field strength across the investigated ionic strength range of the BGE. As a consequence, a simple framework allowing for calculation of the CEC mobilities from the individual separation contributions, viz. electroosmotic and electrophoretic mobilities as well as retention factors, could be applied to model CEC migration. There was a reasonable agreement between calculated and experimental CEC mobility data with deviations typically below 5%. The deconvolution of the individual contributions to CEC migration and separation is of particular value for the understanding of the separation processes in which electrophoretic migration of ionic sample constituents plays a significant role like in ion-exchange CEC and may aid the optimization procedure of the BGE and other experimental conditions such as the optimization of the surface chemistry of the stationary phase. In combination with the remarkable column performance evident from the low theoretical plate heights observed under CEC conditions for all test solutes (3.5-7.5 microm in the flow rate range of 0.4-1.2 mm/s, corresponding to (130,000-300,000 plates per meter), the presented framework provides an attractive tool as the basis for the assessment of chromatographic selectivities in a miniaturized CEC screening of new selectors and chiral stationary phases (CSPs), respectively, from experimental CEC data and known CE mobilities.


Subject(s)
Chromatography, Micellar Electrokinetic Capillary/methods , Silicon Dioxide/chemistry , Chromatography, Liquid/instrumentation , Chromatography, Liquid/methods , Chromatography, Micellar Electrokinetic Capillary/instrumentation , Electrochemistry , Electromagnetic Fields , Kinetics , Molecular Structure , Particle Size , Reproducibility of Results , Sensitivity and Specificity , Stereoisomerism , Surface Properties
6.
J Chromatogr A ; 1161(1-2): 242-51, 2007 Aug 17.
Article in English | MEDLINE | ID: mdl-17582422

ABSTRACT

The preparation of novel brush-type chiral cation-exchange materials based on de novo designed synthetic low molecular mass selectors (SOs) and their evaluation for enantioselective separation of chiral amines by HPLC are presented. The SO as the functional unit for enantioselectivity contains a beta-aminocyclohexanesulfonic acid moiety and is readily accessible via straightforward synthesis in both enantiomeric forms yielding chiral stationary phases (CSPs) with opposite configurations, CSPs 1 and 2, and reversed elution orders. For the evaluation of these novel CSPs by HPLC a sound set of chiral amines, mainly amino-alcohol type drug molecules, was selected. The chromatographic evaluations were carried out using polar organic mobile phase conditions. All of the analytes could be baseline separated, compared to common CSPs in parts with excellent peak efficiencies (up to 70000 theoretical plates per meter for the second eluted enantiomer). A number of experimental parameters have been varied to look at and prove the underlying ion-exchange process on CSPs 1 and 2, and to reveal suitable conditions for their operation. In this context, the influence of proton activity in the mobile phase and the effects of varying concentration and type of the counterion as well as type of co-ion and of bulk solvent components were thoroughly investigated.


Subject(s)
Amines/isolation & purification , Cation Exchange Resins , Chromatography, High Pressure Liquid/instrumentation , Chromatography, Ion Exchange/instrumentation , Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...