Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543459

ABSTRACT

The study demonstrates the significant enhancement in oil production from a Romanian oil field using alkali-polymer (AP) flooding for reactive viscous oil. We conducted comprehensive interfacial tension (IFT) measurements across various alkali and AP concentrations, along with phase behavior assessments. Micromodel flooding experiments were used to examine pore-scale effects and select appropriate chemical concentrations. We tested displacement efficiency at the core level and experimented with different sequences and concentrations of alkali and polymers to minimize costs while maximizing the additional recovery of reactive viscous oil. The IFT analysis revealed that saponification at the oil-alkali interface significantly lowers IFT, but IFT gradually increases as soap diffuses away from the interface. Micromodels indicated that polymer or alkali injection alone achieve only minimal incremental recovery beyond waterflooding. However, AP flooding significantly enhanced incremental oil recovery by efficiently moving the mobilized oil with the viscous fluid and increasing exposure of more oil to the alkali solution. Coreflood experiments corroborated these findings. We also explored how divalent cations influence polymer concentration selection, finding that softening the injection brine significantly increased the viscosity of the AP slug.

2.
Polymers (Basel) ; 14(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36559875

ABSTRACT

In this work, we present various evaluations that are key prior field applications. The workflow combines laboratory approaches to optimize the usage of polymers in combination with alkali to improve project economics. We show that the performance of AP floods can be optimized by making use of lower polymer viscosities during injection but increasing polymer viscosities in the reservoir owing to "aging" of the polymers at high pH. Furthermore, AP conditions enable the reduction of polymer retention in the reservoir, decreasing the utility factors (kg polymers injected/incremental bbl. produced). We used aged polymer solutions to mimic the conditions deep in the reservoir and compared the displacement efficiencies and the polymer adsorption of non-aged and aged polymer solutions. The aging experiments showed that polymer hydrolysis increases at high pH, leading to 60% higher viscosity in AP conditions. Micromodel experiments in two-layer chips depicted insights into the displacement, with reproducible recoveries of 80% in the high-permeability zone and 15% in the low-permeability zone. The adsorption for real rock using 8 TH RSB brine was measured to be approximately half of that in the case of Berea: 27 µg/g vs. 48 µg/g, respectively. The IFT values obtained for the AP lead to very low values, reaching 0.006 mN/m, while for the alkali, they reach only 0.44 mN/m. The two-phase experiments confirmed that lower-concentration polymer solutions aged in alkali show the same displacement efficiency as non-aged polymers with higher concentrations. Reducing the polymer concentration leads to a decrease in EqUF by 40%. If alkali-polymer is injected immediately without a prior polymer slug, then the economics are improved by 37% compared with the polymer case. Hence, significant cost savings can be realized capitalizing on the fast aging in the reservoir. Due to the low polymer retention in AP floods, fewer polymers are consumed than in conventional polymer floods, significantly decreasing the utility factor.

3.
Polymers (Basel) ; 14(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36559880

ABSTRACT

This work uses micromodel, core floods and Field-Flow Fractionation (FFF) evaluations to estimate the behaviour and key elements for selecting polymers to address heterogenous reservoirs. One of the approaches was to construct two-layered micromodels differing six times in permeability and based on the physical characteristics of a Bentheimer sandstone. Further, the impacts of injectivity and displacement efficiency of the chosen polymers were then assessed using single- and two-phase core tests. Moreover, FFF was also used to assess the polymers' conformity, gyration radii, and molecular weight distribution. For the polymer selection for field application, we weighted on the good laboratory performance in terms of sweep efficiency improvement, injectivity, and propagation. Based on the results, polymer B (highest MWD) performed the poorest. Full spectrum MWD measurement using Field-Flow Fractionation is a key in understanding polymer behavior. Heterogenous micromodel evaluations provided consistent data to subsequent core flood evaluations and were in alignment with FFF indications. Single-phase core floods performed higher injection velocities (5 m/d) in combination of FFF showed that narrower MWD distribution polymers (polymers A and C) have less retention and better injectivity. Two-phase core floods performed at low, reservoir representative velocities (1 ft/d) showed that Polymer B could not be injected, with pressure response staying at high values even when chase brine is injected. Adsorption values for all tested polymers at these conditions were high, however highest were observed in the case of polymer B. Overall, for the polymer selection for field application, we weighted on the good laboratory performance in terms of sweep efficiency improvement, injectivity, polymer retention, and propagation; all accounted in this work.

SELECTION OF CITATIONS
SEARCH DETAIL
...