Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 15(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37190184

ABSTRACT

In breast cancer, progression to invasive ductal carcinoma (IDC) involves interactions between immune, myoepithelial, and tumor cells. Development of IDC can proceed through ductal carcinoma in situ (DCIS), a non-obligate, non-invasive stage, or IDC can develop without evidence of DCIS and these cases associate with poorer prognosis. Tractable, immune-competent mouse models are needed to help delineate distinct mechanisms of local tumor cell invasion and prognostic implications. To address these gaps, we delivered murine mammary carcinoma cell lines directly into the main mammary lactiferous duct of immune-competent mice. Using two strains of immune-competent mice (BALB/c, C57BL/6), one immune-compromised (severe combined immunodeficiency; SCID) C57BL/6 strain, and six different murine mammary cancer cell lines (D2.OR, D2A1, 4T1, EMT6, EO771, Py230), we found early loss of ductal myoepithelial cell differentiation markers p63, α-smooth muscle actin, and calponin, and rapid formation of IDC in the absence of DCIS. Rapid IDC formation also occurred in the absence of adaptive immunity. Combined, these studies demonstrate that loss of myoepithelial barrier function does not require an intact immune system, and suggest that these isogenic murine models may prove a useful tool to study IDC in the absence of a non-obligatory DCIS stage-an under-investigated subset of poor prognostic human breast cancer.

2.
Mol Oncol ; 15(10): 2634-2671, 2021 10.
Article in English | MEDLINE | ID: mdl-32981205

ABSTRACT

Senescence refers to a cellular state featuring a stable cell-cycle arrest triggered in response to stress. This response also involves other distinct morphological and intracellular changes including alterations in gene expression and epigenetic modifications, elevated macromolecular damage, metabolism deregulation and a complex pro-inflammatory secretory phenotype. The initial demonstration of oncogene-induced senescence in vitro established senescence as an important tumour-suppressive mechanism, in addition to apoptosis. Senescence not only halts the proliferation of premalignant cells but also facilitates the clearance of affected cells through immunosurveillance. Failure to clear senescent cells owing to deficient immunosurveillance may, however, lead to a state of chronic inflammation that nurtures a pro-tumorigenic microenvironment favouring cancer initiation, migration and metastasis. In addition, senescence is a response to post-therapy genotoxic stress. Therefore, tracking the emergence of senescent cells becomes pivotal to detect potential pro-tumorigenic events. Current protocols for the in vivo detection of senescence require the analysis of fixed or deep-frozen tissues, despite a significant clinical need for real-time bioimaging methods. Accuracy and efficiency of senescence detection are further hampered by a lack of universal and more specific senescence biomarkers. Recently, in an attempt to overcome these hurdles, an assortment of detection tools has been developed. These strategies all have significant potential for clinical utilisation and include flow cytometry combined with histo- or cytochemical approaches, nanoparticle-based targeted delivery of imaging contrast agents, OFF-ON fluorescent senoprobes, positron emission tomography senoprobes and analysis of circulating SASP factors, extracellular vesicles and cell-free nucleic acids isolated from plasma. Here, we highlight the occurrence of senescence in neoplasia and advanced tumours, assess the impact of senescence on tumorigenesis and discuss how the ongoing development of senescence detection tools might improve early detection of multiple cancers and response to therapy in the near future.


Subject(s)
Cellular Senescence , Neoplasms , Biomarkers/metabolism , Carcinogenesis/metabolism , Humans , Neoplasms/diagnosis , Neoplasms/pathology , Phenotype , Tumor Microenvironment
3.
Genetics ; 207(4): 1371-1386, 2017 12.
Article in English | MEDLINE | ID: mdl-28978675

ABSTRACT

Dolichols are isoprenoid lipids of varying length that act as sugar carriers in glycosylation reactions in the endoplasmic reticulum. In Saccharomyces cerevisiae, there are two cis-prenyltransferases that synthesize polyprenol-an essential precursor to dolichol. These enzymes are heterodimers composed of Nus1 and either Rer2 or Srt1. Rer2-Nus1 and Srt1-Nus1 can both generate dolichol in vegetative cells, but srt1∆ cells grow normally while rer2∆ grows very slowly, indicating that Rer2-Nus1 is the primary enzyme used in mitotically dividing cells. In contrast, SRT1 performs an important function in sporulating cells, where the haploid genomes created by meiosis are packaged into spores. The spore wall is a multilaminar structure and SRT1 is required for the generation of the outer chitosan and dityrosine layers of the spore wall. Srt1 specifically localizes to lipid droplets associated with spore walls, and, during sporulation there is an SRT1-dependent increase in long-chain polyprenols and dolichols in these lipid droplets. Synthesis of chitin by Chs3, the chitin synthase responsible for chitosan layer formation, is dependent on the cis-prenyltransferase activity of Srt1, indicating that polyprenols are necessary to coordinate assembly of the spore wall layers. This work shows that a developmentally regulated cis-prenyltransferase can produce polyprenols that function in cellular processes besides protein glycosylation.


Subject(s)
Alkyl and Aryl Transferases/genetics , Chitin Synthase/genetics , Dolichols/genetics , Saccharomyces cerevisiae Proteins/genetics , Spores, Fungal/genetics , Cell Wall/genetics , Chitin/biosynthesis , Chitin/genetics , Chitosan/chemistry , Chitosan/metabolism , Dimethylallyltranstransferase/genetics , Dolichols/biosynthesis , Endoplasmic Reticulum/genetics , Haploidy , Meiosis/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Spores, Fungal/growth & development , Tretinoin/analogs & derivatives , Tretinoin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...