Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Transplant Direct ; 10(2): e1568, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38274473

ABSTRACT

Background: Normothermic machine perfusion (NMP) is used to preserve and test donor livers before transplantation. During NMP, the liver is metabolically active and produces waste products, which are released into the perfusate. In this study, we describe our simplified and inexpensive setup that integrates continuous renal replacement therapy (CRRT) with NMP for up to 7 d. We also investigated if the ultrafiltrate could be used for monitoring perfusate concentrations of small molecules such as glucose and lactate. Methods: Perfusate composition (urea, osmolarity, sodium, potassium, chloride, calcium, magnesium, phosphate, glucose, and lactate) was analyzed from 56 human NMP procedures without CRRT. Next, in 6 discarded human donor livers, CRRT was performed during NMP by integrating a small dialysis filter (0.2 m2) into the circuit to achieve continuous ultrafiltration combined with continuous fluid substitution for up to 7 d. Results: Within a few hours of NMP without CRRT, a linear increase in osmolarity and concentrations of urea and phosphate to supraphysiological levels was observed. After integration of CRRT into the NMP circuit, the composition of the perfusate was corrected to physiological values within 12 h, and this homeostasis was maintained during NMP for up to 7 d. Glucose and lactate levels, as measured in the CRRT ultrafiltrate, were strongly correlated with perfusate levels (r = 0.997, P < 0.001 and r = 0.999, P < 0.001, respectively). Conclusions: The integration of CRRT into the NMP system corrected the composition of the perfusate to near-physiological values, which could be maintained for up to 7 d. The ultrafiltrate can serve as an alternative to the perfusate to monitor concentrations of small molecules without potentially compromising sterility.

2.
Cardiol Young ; : 1-7, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38037796

ABSTRACT

BACKGROUND: Haemodynamic changes in caval venous flow distribution occurring during bidirectional cavopulmonary anastomosis operation are still largely unknown. METHODS: Transit time flow measurements were performed in 15 cavopulmonary anastomosis operations. Superior and inferior caval vein flows were measured before and after the cavopulmonary anastomosis. Ratio of superior caval vein to overall caval veins flow was calculated. RESULTS: Mean superior caval vein flow ratio before cavopulmonary anastomosis was higher than previously reported for healthy children. Superior caval vein flow ratio decreased in 14/15 patients after cavopulmonary anastomosis: mean 0.63 ± 0.12 before versus 0.43 ± 0.14 after. No linear correlation between intraoperative superior caval vein pressure and superior caval vein flow after cavopulmonary anastomosis was found. Neither Nakata index nor pulmonary vascular resistance measured at preoperative cardiac catheterisation correlated with intraoperative flows. None of patients died or required a take down. CONCLUSIONS: The higher mean superior caval vein flow ratio before cavopulmonary anastomosis compared to healthy children suggests flow redistribution in univentricular physiology to protect brain and neurodevelopment. The decrease of superior caval vein flow ratio after cavopulmonary anastomosis may reflect the flow redistribution related to trans-pulmonary gradient. The lack of correlation between superior caval vein pressure and superior caval vein flow could be explained by limited sample size and multifactorial determinants of caval veins flow, although pressure remain essential. Larger sample of measurements are needed to find flow range potentially predictive for clinical failure. To authors' knowledge, this is the first intraoperative flow measurement of both caval veins during cavopulmonary operations.

3.
Perfusion ; : 2676591231168642, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36995209

ABSTRACT

BACKGROUND: Despite systemic anticoagulation and antithrombotic surface coating, oxygenator dysfunction remains one of most common technical complications of Extracorporeal membrane oxygenation (ECMO). Several parameters have been associated with an oxygenator exchange, but no guidelines for when to perform an exchange are published. An exchange, especially an emergency exchange, has a risk of complications. Therefore, a delicate balance between oxygenator dysfunction and the exchange of the oxygenator exists. This study aimed to identify risk factors and predictors for elective and emergency oxygenator exchanges. METHODS: This observational cohort study included all adult patients supported with veno-venous extracorporeal membrane oxygenation (V-V ECMO). We compared patients' characteristics and laboratory values of patients with and without an oxygenator exchange and between an elective and emergency exchange, defined as an exchange outside office hours. Risk factors for an oxygenator exchange were identified with cox regression analyses, and risk factors for an emergency exchange were identified with logistic regression analyses. RESULTS: We included forty-five patients in the analyses. There were twenty-nine oxygenator exchanges in nineteen patients (42%). More than a third of the exchanges were emergency exchanges. Higher partial pressure of carbon dioxide (PaCO2), transmembrane pressure difference (ΔP), and hemoglobin (Hb) were associated with an oxygenator exchange. Lower lactate dehydrogenase (LDH) was the only risk factor for an emergency exchange. CONCLUSION: Oxygenator exchange is frequent during V-V ECMO support. PaCO2, ΔP and Hb were associated with an oxygenator exchange and lower LDH with the risk of an emergency exchange.

4.
Perfusion ; 38(2): 285-291, 2023 03.
Article in English | MEDLINE | ID: mdl-34596463

ABSTRACT

INTRODUCTION: The Activated Clotting Time (ACT) is commonly used to manage anticoagulation during cardiac surgery. The aim of this study was to compare the older manually operated Hemochron® Response and the automated Hemochron® Signature Elite. METHODS: In this observational study the clinically relevant differences of both devices were investigated simultaneously, using duplicate measurements, in 29 patients who underwent a Coronary Artery Bypass Grafting (CABG) or Aortic Valve Replacement (AVR) in order to determine reliability, bias, and to detect which method has the lowest variation. Blood samples were obtained from the arterial line prior to surgery, after administration of 300 IU/kg heparin, 5 minutes after initiation of cardiopulmonary bypass and successively every 30 minutes, and after protamine administration. RESULTS: A total of 202 measurements were performed. Of these 10 measurements were out of range in the Response and 9 in the Elite. About 27 single unstable magnet errors were seen in the Response versus no measurement errors in the Elite. No statistically significant differences between the Response (p = 0.22, Wilcoxon rank) and Elite (p = 0.064) duplicates were observed. The Response values were consistently higher during heparinization than the Elite measurements (p = 0.002, repeated measurements) with an average positive bias of around 56 seconds during heparinization (Bland-Altman). Overall, the coefficient of variation (CoV) increased during heparinization. CONCLUSION: The Elite was more reliable, but the variation was higher for the Elite than the Response. The observed positive bias in the Response compared to the Elite could affect heparin administration during surgery making the two systems not interchangeable.


Subject(s)
Anticoagulants , Heparin , Humans , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Whole Blood Coagulation Time , Reproducibility of Results , Blood Coagulation Tests , Heparin/therapeutic use , Cardiopulmonary Bypass
5.
Artif Organs ; 46(11): 2179-2190, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35730930

ABSTRACT

BACKGROUND: Ex vivo lung perfusion (EVLP), is a platform that allows simultaneous testing and treatment of the lungs. However, use of EVLP is costly and requires access to lab animals and accompanying facilities. To increase the use of EVLP for research, we developed a method to perform EVLP using abattoir procured lungs. Furthermore, we were also able to significantly decrease costs. METHODS: Six pair of lungs were procured from abattoir sheep. The lungs were then flushed and stored in ice for 3 h. A low-flow (20% of cardiac output) approach, a tidal volume of 6 ml/kg bodyweight and total perfusion time of 3 h were chosen. Perfusion fluids and circuits were self-made. Lung biopsies, perfusate collection, respiratory values, circulatory pressures were recorded and hourly blood gas analyses were performed. RESULTS: Mean pO2 remained stable from 60 min (49.3 ± 7.1 kPa) to 180 min (51.5 kPa ± 8.0), p = 0.66. Pulmonary artery pressure remained ≤15 mm Hg and the left atrial pressure remained between 3 and 5 mm Hg and peak respiratory pressures ≤20 cmH2 O. Lactate dehydrogenase increased from start (96.3 ± 56.4 U/L) to the end of perfusion (315.8 ± 85.0 U/L), p < 0.05. No difference was observed in ATP between procurement and post-EVLP, 129.7 ± 37.4 µmol/g protein to 132.0 ± 23.4 µmol/g, p = 0.92. CONCLUSIONS: Sheep lungs, acquired from an abattoir, can be ex vivo perfused under similar conditions as lab animal lungs with similar results regarding e.g., oxygenation and ATP restoration. Furthermore, costs can be significantly reduced by making use of this abattoir model. By increasing accessibility and lowering costs for experiments using lung perfusion, more results may be achieved in the field of lung diseases.


Subject(s)
Lung Transplantation , Sheep , Animals , Lung Transplantation/methods , Abattoirs , Lung/blood supply , Perfusion/methods , Disease Models, Animal , Adenosine Triphosphate
6.
Front Oncol ; 10: 770, 2020.
Article in English | MEDLINE | ID: mdl-32509579

ABSTRACT

mtDNA variations often result in bioenergetic dysfunction inducing a metabolic switch toward glycolysis resulting in an unbalanced pH homeostasis. In hypoxic cells, expression of the tumor-associated carbonic anhydrase IX (CAIX) is enhanced to maintain cellular pH homeostasis. We hypothesized that cells with a dysfunctional oxidative phosphorylation machinery display elevated CAIX expression levels. Increased glycolysis was observed for cytoplasmic 143B mutant hybrid (m.3243A>G, >94.5%) cells (p < 0.05) and 143B mitochondrial DNA (mtDNA) depleted cells (p < 0.05). Upon hypoxia (0.2%, 16 h), genetic or pharmacological oxidative phosphorylation (OXPHOS) inhibition resulted in decreased CAIX (p < 0.05), vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1-alpha (HIF-1α) expression levels. Reactive oxygen species (ROS) and prolyl-hydroxylase 2 (PHD2) levels could not explain these observations. In vivo, tumor take (>500 mm3) took longer for mutant hybrid xenografts, but growth rates were comparable with control tumors upon establishment. Previously, it has been shown that HIF-1α is responsible for tumor establishment. In agreement, we found that HIF-1α expression levels and the pimonidazole-positive hypoxic fraction were reduced for the mutant hybrid xenografts. Our results demonstrate that OXPHOS dysfunction leads to a decreased HIF-1α stabilization and subsequently to a reduced expression of its downstream targets and hypoxic fraction in vivo. In contrast, hypoxia-inducible factor 2-alpha (HIF-2α) expression levels in these xenografts were enhanced. Inhibition of mitochondrial function is therefore an interesting approach to increase therapeutic efficacy in hypoxic tumors.

7.
J Clin Med ; 9(4)2020 Apr 19.
Article in English | MEDLINE | ID: mdl-32325803

ABSTRACT

Extracorporeal membrane oxygenation (ECMO) is associated with frequent hemorrhagic and thromboembolic complications. The multiple effects of ECMO include inflammatory response on contact with the circuit; hemolysis acquired von Willebrand syndrome likely affects the function of red blood cells (RBC) and platelets. The aim of this prospective observational study was to analyze RBC aggregation and elongation (deformability) and platelet aggregation in the first week of ECMO. Sixteen patients were included. Blood samples were taken prior to initiation of ECMO and on days 1, 2, 3, 5, and 7. RBC aggregation and elongation were analyzed using the laser-assisted optical rotational red cell analyzer (Lorrca). Upstroke, top, and amplitude as indices of aggregation showed significant time effects. RBC elongation was not affected at low shear stress. At high shear stress there was an increase in the elongation index at day 2 (p = 0.004), followed by a decrease. Platelet function was analyzed using multiple electrode aggregometry (Multiplate®). In pairwise comparison in the days 1-7 to the value prior to ECMO there was no significant difference in platelet aggregation by any of the three agonists (ADP p = 0.61; TRAP p = 0.77; Ristocetin p = 0.25). This implies that the rheology of RBCs seemed to be more affected by ECMO than platelets. Especially the red blood cell deformability continues to decline at higher shear stress.

8.
PLoS One ; 12(8): e0182508, 2017.
Article in English | MEDLINE | ID: mdl-28771582

ABSTRACT

Several clinically used drugs are mitotoxic causing mitochondrial DNA (mtDNA) variations, and thereby influence cancer treatment response. We hypothesized that radiation responsiveness will be enhanced in cellular models with decreased mtDNA content, attributed to altered reactive oxygen species (ROS) production and antioxidant capacity. For this purpose BEAS-2B, A549, and 143B cell lines were depleted from their mtDNA (ρ0). Overall survival after irradiation was increased (p<0.001) for BEAS-2B ρ0 cells, while decreased for both tumor ρ0 lines (p<0.05). In agreement, increased residual DNA damage was observed after mtDNA depletion for A549 and 143B cells. Intrinsic radiosensitivity (surviving fraction at 2Gy) was not influenced. We investigated whether ROS levels, oxidative stress and/or antioxidant responses were responsible for altered radiation responses. Baseline ROS formation was similar between BEAS-2B parental and ρ0 cells, while reduced in A549 and 143B ρ0 cells, compared to their parental counterparts. After irradiation, ROS levels significantly increased for all parental cell lines, while levels for ρ0 cells remained unchanged. In order to investigate the presence of oxidative stress upon irradiation reduced glutathione: oxidized glutathione (GSH:GSSG) ratios were determined. Irradiation reduced GSH:GSSG ratios for BEAS-2B parental and 143B ρ0, while for A549 this ratio remained equal. Additionally, changes in antioxidant responses were observed. Our results indicate that mtDNA depletion results in varying radiation responses potentially involving variations in cellular ROS and antioxidant defence mechanisms. We therefore suggest when mitotoxic drugs are combined with radiation, in particular at high dose per fraction, the effect of these drugs on mtDNA copy number should be explored.


Subject(s)
DNA, Mitochondrial/genetics , DNA/radiation effects , Oxidative Stress/radiation effects , Sequence Deletion , Cell Line, Tumor , Cell Proliferation/radiation effects , Cell Survival/radiation effects , DNA Damage , Humans , In Vitro Techniques , Reactive Oxygen Species/metabolism
10.
Bioengineered ; 7(2): 116-9, 2016 Apr 02.
Article in English | MEDLINE | ID: mdl-27212260

ABSTRACT

We propose a mechanism of action for the betL* mutation which is based on DNA topology. Removing a single thymine residue from the betL σ(A) promoter's -10 and -35 spacer results in a 'twist'-mediated activation of transcription which accounts for the osmotolerance phenotype observed for strains expressing betL*.


Subject(s)
Gene Expression Regulation, Bacterial , Listeria monocytogenes/genetics , Bacterial Proteins/genetics , Betaine/metabolism , Carrier Proteins/genetics
11.
Nucleic Acids Res ; 44(1): 152-63, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26384414

ABSTRACT

Increasing amounts of data support a role for guanine quadruplex (G4) DNA and RNA structures in various cellular processes. We stained different organisms with monoclonal antibody 1H6 specific for G4 DNA. Strikingly, immuno-electron microscopy showed exquisite specificity for heterochromatin. Polytene chromosomes from Drosophila salivary glands showed bands that co-localized with heterochromatin proteins HP1 and the SNF2 domain-containing protein SUUR. Staining was retained in SUUR knock-out mutants but lost upon overexpression of SUUR. Somatic cells in Macrostomum lignano were strongly labeled, but pluripotent stem cells labeled weakly. Similarly, germline stem cells in Drosophila ovaries were weakly labeled compared to most other cells. The unexpected presence of G4 structures in heterochromatin and the difference in G4 staining between somatic cells and stem cells with germline DNA in ciliates, flatworms, flies and mammals point to a conserved role for G4 structures in nuclear organization and cellular differentiation.


Subject(s)
G-Quadruplexes , Guanine , Heterochromatin/chemistry , Heterochromatin/genetics , Animals , Ciliophora , Drosophila , Germ Cells/metabolism , Histones/metabolism , Islets of Langerhans/metabolism , Islets of Langerhans/ultrastructure , Platyhelminths , Polytene Chromosomes/chemistry , Polytene Chromosomes/genetics , Rats
12.
Am J Physiol Lung Cell Mol Physiol ; 309(10): L1112-23, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26320152

ABSTRACT

In chronic obstructive pulmonary disease (COPD), oxidative stress regulates the inflammatory response of bronchial epithelium and monocytes/macrophages through kinase modulation and has been linked to glucocorticoid unresponsiveness. Glycogen synthase-3ß (GSK3ß) inactivation plays a key role in mediating signaling processes upon reactive oxygen species (ROS) exposure. We hypothesized that GSK3ß is involved in oxidative stress-induced glucocorticoid insensitivity in COPD. We studied levels of phospho-GSK3ß-Ser9, a marker of GSK3ß inactivation, in lung sections and cultured monocytes and bronchial epithelial cells of COPD patients, control smokers, and nonsmokers. We observed increased levels of phospho-GSK3ß-Ser9 in monocytes, alveolar macrophages, and bronchial epithelial cells from COPD patients and control smokers compared with nonsmokers. Pharmacological inactivation of GSK3ß did not affect CXCL8 or granulocyte-macrophage colony-stimulating factor (GM-CSF) expression but resulted in glucocorticoid insensitivity in vitro in both inflammatory and structural cells. Further mechanistic studies in monocyte and bronchial epithelial cell lines showed that GSK3ß inactivation is a common effector of oxidative stress-induced activation of the MEK/ERK-1/2 and phosphatidylinositol 3-kinase/Akt signaling pathways leading to glucocorticoid unresponsiveness. In primary monocytes, the mechanism involved modulation of histone deacetylase 2 (HDAC2) activity in response to GSK3ß inactivation. In conclusion, we demonstrate for the first time that ROS-induced glucocorticoid unresponsiveness in COPD is mediated through GSK3ß, acting as a ROS-sensitive hub.


Subject(s)
Dexamethasone/pharmacology , Glucocorticoids/pharmacology , Glycogen Synthase Kinase 3/physiology , Pulmonary Disease, Chronic Obstructive/enzymology , Aged , Cells, Cultured , Dexamethasone/therapeutic use , Female , Gene Expression/drug effects , Glucocorticoids/therapeutic use , Glycogen Synthase Kinase 3 beta , Histone Deacetylase 2/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Macrophages, Alveolar/enzymology , Male , Middle Aged , Oxidative Stress , Pulmonary Disease, Chronic Obstructive/drug therapy , Reactive Oxygen Species/metabolism , Respiratory Mucosa/enzymology , Signal Transduction
13.
Am J Respir Crit Care Med ; 190(2): 155-64, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24871890

ABSTRACT

RATIONALE: Cigarette smoke is the major risk factor in the development of chronic obstructive pulmonary disease (COPD). Lipidomics is a novel and emerging research field that may provide new insights in the origins of chronic inflammatory diseases, such as COPD. OBJECTIVES: To investigate whether expression of the sputum lipidome is affected by COPD or cigarette smoking. METHODS: Lipid expression was investigated with liquid chromatography and high-resolution quadrupole time-of-flight mass spectrometry in induced sputum comparing smokers with and without COPD, and never-smokers. Changes in lipid expression after 2-month smoking cessation were investigated in smokers with and without COPD. MEASUREMENTS AND MAIN RESULTS: More than 1,500 lipid compounds were identified in sputum. The class of sphingolipids was significantly higher expressed in smokers with COPD than in smokers without COPD. At single compound level, 168 sphingolipids, 36 phosphatidylethanolamine lipids, and 5 tobacco-related compounds were significantly higher expressed in smokers with COPD compared with smokers without COPD. The 13 lipids with a high fold change between smokers with and without COPD showed high correlations with lower lung function and inflammation in sputum. Twenty (glyco)sphingolipids and six tobacco-related compounds were higher expressed in smokers without COPD compared with never-smokers. Two-month smoking cessation reduced expression of 26 sphingolipids in smokers with and without COPD. CONCLUSIONS: Expression of lipids from the sphingolipid pathway is higher in smokers with COPD compared with smokers without COPD. Considering their potential biologic properties, they may play a role in the pathogenesis of COPD.


Subject(s)
Pulmonary Disease, Chronic Obstructive/metabolism , Smoking/metabolism , Sphingolipids/metabolism , Sputum/metabolism , Adult , Aged , Biomarkers/metabolism , Case-Control Studies , Chromatography, Liquid , Female , Humans , Male , Mass Spectrometry/methods , Middle Aged , Phosphatidylethanolamines/metabolism , Smoking Cessation
14.
Thorax ; 69(1): 5-13, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23980116

ABSTRACT

BACKGROUND: We hypothesised that increased oxidative stress, as present in the airways of asthma and chronic obstructive pulmonary disease (COPD) patients, induces epithelial damage and reduces epithelial responsiveness to suppressive effects of corticosteroids on proinflammatory cytokine production and barrier function. METHODS: We induced oxidative stress by H2O2 and/or cigarette smoke extract (CSE) in human bronchial epithelial 16HBE cells and primary bronchial epithelial cells (PBEC) derived by brushings from asthma patients, COPD patients, and smoking and non-smoking control individuals. We investigated effects of budesonide on barrier function (electrical resistance) and TNF-α-induced proinflammatory cytokine production (IL-8/CXCL8, granulocyte macrophage-colony stimulating factor (GM-CSF)). RESULTS: We observed that H2O2 and CSE reduce epithelial resistance. Budesonide significantly counteracted this effect, likely by protection against epidermal growth factor receptor-dependent cell-cell contact disruption. Furthermore, budesonide suppressed proinflammatory cytokine production. H2O2 pretreatment reduced this effect of budesonide on cytokine production in both 16HBE cells and PBECs. Importantly, PBECs from asthma and COPD patients were less sensitive to budesonide with respect to cytokine production and barrier function than PBECs from control subjects. CONCLUSIONS: Together, our data indicate that budesonide suppresses epithelial proinflammatory responses and barrier dysfunction and that oxidative stress reduces these effects in airway epithelium from asthma and COPD patients. Therefore, restoration of corticosteroid responsiveness in asthma and COPD may act to improve the airway epithelial barrier.


Subject(s)
Bronchi/cytology , Epithelial Cells/drug effects , Epithelial Cells/physiology , Glucocorticoids/pharmacology , Oxidative Stress/physiology , Adult , Asthma/drug therapy , Asthma/physiopathology , Budesonide/therapeutic use , Cells, Cultured , Female , Glucocorticoids/therapeutic use , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Interleukin-8/metabolism , Male , Middle Aged , Phosphorylation/drug effects , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/physiopathology , Smoking/adverse effects
15.
Respir Res ; 14: 97, 2013 Oct 02.
Article in English | MEDLINE | ID: mdl-24088173

ABSTRACT

BACKGROUND: Cigarette smoking is the major risk factor for COPD, leading to chronic airway inflammation. We hypothesized that cigarette smoke induces structural and functional changes of airway epithelial mitochondria, with important implications for lung inflammation and COPD pathogenesis. METHODS: We studied changes in mitochondrial morphology and in expression of markers for mitochondrial capacity, damage/biogenesis and fission/fusion in the human bronchial epithelial cell line BEAS-2B upon 6-months from ex-smoking COPD GOLD stage IV patients to age-matched smoking and never-smoking controls. RESULTS: We observed that long-term CSE exposure induces robust changes in mitochondrial structure, including fragmentation, branching and quantity of cristae. The majority of these changes were persistent upon CSE depletion. Furthermore, long-term CSE exposure significantly increased the expression of specific fission/fusion markers (Fis1, Mfn1, Mfn2, Drp1 and Opa1), oxidative phosphorylation (OXPHOS) proteins (Complex II, III and V), and oxidative stress (Mn-SOD) markers. These changes were accompanied by increased levels of the pro-inflammatory mediators IL-6, IL-8, and IL-1ß. Importantly, COPD primary bronchial epithelial cells (PBECs) displayed similar changes in mitochondrial morphology as observed in long-term CSE-exposure BEAS-2B cells. Moreover, expression of specific OXPHOS proteins was higher in PBECs from COPD patients than control smokers, as was the expression of mitochondrial stress marker PINK1. CONCLUSION: The observed mitochondrial changes in COPD epithelium are potentially the consequence of long-term exposure to cigarette smoke, leading to impaired mitochondrial function and may play a role in the pathogenesis of COPD.


Subject(s)
Bronchi/pathology , Epithelial Cells/pathology , Mitochondria/physiology , Mitochondria/ultrastructure , Mitochondrial Dynamics/physiology , Mitochondrial Turnover/physiology , Smoking/adverse effects , Adult , Aged , Bronchi/metabolism , Case-Control Studies , Cell Line , Cells, Cultured , Cytokines/metabolism , Dynamins , Epithelial Cells/metabolism , Female , GTP Phosphohydrolases/metabolism , Humans , In Vitro Techniques , Male , Membrane Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Middle Aged , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Proteins/metabolism , Protein Kinases/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/physiopathology , Risk Factors , Superoxide Dismutase/metabolism , Time Factors
16.
Bioengineered ; 4(6): 401-7, 2013.
Article in English | MEDLINE | ID: mdl-23478432

ABSTRACT

Betaine uptake in Listeria monocytogenes is mediated by three independent transport systems, the simplest of which in genetic terms is the secondary transporter BetL. Using a random mutagenesis approach, based on the E. coli XL1 Red mutator strain, we identified a single point mutation in a putative promoter region upstream of the BetL coding region which leads to a significant increase in betL transcript levels under osmo- and chill-stress conditions and a concomitant increase in stress tolerance. Furthermore, the mutation appears to counter the heretofore unreported "twisted" cell morphology observed for L. monocytogenes grown at elevated osmolarities in tryptone soy broth.


Subject(s)
Bacterial Proteins/genetics , Betaine/metabolism , Carrier Proteins/genetics , Listeria monocytogenes/genetics , Point Mutation , Promoter Regions, Genetic , Amino Acid Sequence , Bacterial Proteins/metabolism , Base Sequence , Carrier Proteins/metabolism , Cold Temperature , DNA, Bacterial/genetics , Gene Expression Regulation, Bacterial , Listeria monocytogenes/metabolism , Molecular Sequence Data , Osmolar Concentration , Sequence Analysis, DNA , Stress, Physiological
17.
BMJ Open ; 3(2)2013.
Article in English | MEDLINE | ID: mdl-23377993

ABSTRACT

INTRODUCTION: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease with pulmonary and extra-pulmonary manifestations. Although COPD is a complex disease, diagnosis and staging are still based on simple spirometry measurements. Different COPD phenotypes exist based on clinical, physiological, immunological and radiological observations. Cigarette smoking is the most important risk factor for COPD, but only 15-20% of smokers develop the disease, suggesting a genetic predisposition. Unfortunately, little is known about the pathogenesis of COPD, and even less on the very first steps that are associated with an aberrant response to smoke exposure. This study aims to investigate the underlying local and systemic inflammation of different clinical COPD phenotypes, and acute effects of cigarette smoke exposure in individuals susceptible and non-susceptible for the development of COPD. Furthermore, we will investigate mechanisms associated with corticosteroid insensitivity. Our study will provide valuable information regarding the pathogenetic mechanisms underlying the natural course of COPD. METHODS AND ANALYSIS: This cross-sectional study will include young and old individuals susceptible or non-susceptible to develop COPD. At a young age (18-40 years) 60 'party smokers' will be included who are called susceptible or non-susceptible based on COPD prevalence in smoking family members. In addition, 30 healthy smokers (age 40-75 years) and 110 COPD patients will be included. Measurements will include questionnaires, pulmonary function, low-dose CT scanning of the lung, body composition, 6 min walking distance and biomarkers in peripheral blood, sputum, urine, exhaled breath condensate, epithelial lining fluid, bronchial brushes and biopsies. Non-biased approaches such as proteomics will be performed in blood and epithelial lining fluid. ETHICS AND DISSEMINATION: This multicentre study was approved by the medical ethical committees of UMC Groningen and Utrecht, the Netherlands. The study findings will be presented at conferences and will be reported in peer-reviewed journals. TRIAL REGISTRATION: ClinicalTrials.gov, NCT00807469 (study 1) and NCT00850863 (study 2).

SELECTION OF CITATIONS
SEARCH DETAIL
...