Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Int J Comput Assist Radiol Surg ; 17(12): 2231-2237, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36018397

ABSTRACT

PURPOSE: Ultrasound (US) and Shear Wave Elastography (SWE) imaging are non-invasive methods used for breast lesion characterization. While US and SWE images provide both morphological information, SWE visualizes in addition the elasticity of tissue. In this study a Discriminative Convolutional Neural Network (DCNN) model is applied to US and SWE images and their combination to classify the breast lesions into malignant or benign cases. Furthermore, it is identified whether analysing only the region of the elastogram or including the surrounding B-mode image gives a superior performance. METHODS: The dataset used in this study consists of 746 images obtained from 207 patients comprising 486 malignant and 260 benign breast lesions. From each image the US and SWE image was extracted, once including only the region of the elastogram and once including also the surrounding B-mode image. These four datasets were applied individually to a DCNN to determine their predictive capability. Each the best US and SWE dataset were used to examine different combination methods with DCNN. The results were compared to the manual assessment by an expert radiologist. RESULTS: The combination of US and SWE images with the surrounding B-mode image using two ensembled DCNN models achieved best results with an accuracy of 93.53 %, sensitivity of 94.42 %, specificity of 90.75 % and area under the curve (AUC) of 96.55 %. CONCLUSION: This study showed that using the whole US and SWE images through DCNN was superior to methods, in which only the region of elastogram was used. Combining breast cancer US and SWE images with two ensembled DCNN models in parallel improved the results. The accuracy, sensitivity and AUC of the best combination method were significantly superior to the results of using a single dataset through DCNN and to the results of the expert radiologist.


Subject(s)
Breast Neoplasms , Elasticity Imaging Techniques , Female , Humans , Elasticity Imaging Techniques/methods , Breast Neoplasms/diagnosis , Reproducibility of Results , Ultrasonography, Mammary/methods , Breast/diagnostic imaging , Neural Networks, Computer , Sensitivity and Specificity , Diagnosis, Differential
2.
Dalton Trans ; 50(25): 8811-8819, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34095921

ABSTRACT

Alumina thin films are synthesized by combustion synthesis of mixtures of aluminium nitrate (ALN) and methylcarbazate (MCZ). The interdependence of the ratio of oxidizer and reducing agent on composition, microstructure and electronic properties of the resulting oxide layers is investigated. The dielectric and insulating behaviour is improved by addition of different amounts of MCZ (MCZ : ALN = 0.67 or 2.5). In this way films (thickness ∼140 nm) with a dielectric constant κ of 9.7 and a dielectric loss tan δ below 0.015 can be achieved. Medium concentrations of MCZ (MCZ : ALN = 1.0 or 1.5) lead to films with lower performance, though. Our studies indicate two opposing effects of the organic additive. Removal of organic residues during film formation as combustion gases is potentially detrimental. Larger amounts of MCZ, however, cause condensation reactions in the precusor mixture, which improve the microstructure. The porosity of the films can be sucessfully analyzed by positron annihilation liftetime studies. In this way the impact of the organic ligand sphere on the resulting microstructure can be quantified. Samples prepared from ALN alone exhibit mesopores and also larger micropores. In contrast, the formation of mesopores can be inhibited by addition of MCZ.

3.
Chemistry ; 27(38): 9791-9800, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34002896

ABSTRACT

Multilayered heterostructures comprising of In2 O3 , SnO2 , and Al2 O3 were studied for their application in thin-film transistors (TFT). The compositional influence of tin oxide on the properties of the thin-film, as well as on the TFT characteristics is investigated. The heterostructures are fabricated by atomic layer deposition (ALD) at 200 °C, employing trimethylindium (TMI), tetrakis(dimethylamino)tin (TDMASn), trimethylaluminum (TMA), and water as precursors. After post-deposition annealing at 400 °C the thin-films are found to be amorphous, however, they show a discrete layer structure of the individual oxides of uniform film thickness and high optical transparency in the visible region. Incorporation of only two monolayers of Al2 O3 in the active semiconducting layer the formation of oxygen vacancies can be effectively suppressed, resulting in an improved semiconducting and switching behavior. The heterostacks comprising of In2 O3 /SnO2 /Al2 O3 are incorporated into TFT devices, exhibiting a saturation field-effect mobility (µsat ) of 2.0 cm2 ⋅ V-1 s-1 , a threshold-voltage (Vth ) of 8.6 V, a high current on/off ratio (IOn /IOff ) of 1.0×107 , and a subthreshold swing (SS) of 485 mV ⋅ dec-1 . The stability of the TFT under illumination is also altered to a significant extent. A change in the transfer characteristic towards conductive behavior is evident when illuminated with light of an energy of 3.1 eV (400 nm).

4.
Chemistry ; 27(17): 5312, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33538371

ABSTRACT

Invited for the cover of this issue is Jörg J. Schneider and co-workers at Technical University Darmstadt, Helmholtz-Zentrum Dresden-Rossendorf and KIT Karlsruhe. The image depicts the application of high energy generated electron/positron couples which are able to detect defects sites in semiconducting zinc oxide thin films. Read the full text of the article at 10.1002/chem.202004270.

5.
Chemistry ; 27(17): 5422-5431, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33241921

ABSTRACT

Zinc oxide thin films are fabricated by controlled oxidation of sputtered zinc metal films on a hotplate in air at temperatures between 250 and 450 °C. The nanocrystalline films possess high relative densities and show preferential growth in (100) orientation. Integration in thin-film transistors reveals moderate charge carrier mobilities as high as 0.2 cm2 V-1 s-1 . The semiconducting properties depend on the calcination temperature, whereby the best performance is achieved at 450 °C. The defect structure of the thin ZnO film can be tracked by Doppler-broadening positron annihilation spectroscopy as well as positron lifetime studies. Comparably long positron lifetimes suggest interaction of zinc vacancies (VZn ) with one or more oxygen vacancies (VO ) in larger structural entities. Such VO -VZn defect clusters act as shallow acceptors, and thus, reduce the overall electron conductivity of the film. The concentration of these defect clusters decreases at higher calcination temperatures as indicated by changes in the S and W parameters. Such zinc oxide films obtained by conversion of metallic zinc can also be used as seed layers for solution deposition of zinc oxide nanowires employing a mild microwave-assisted process. The functionality of the obtained nanowire arrays is tested in a UV sensor device. The best results with respect to sensor sensitivity are achieved with thinner seed layers for device construction.

6.
ChemistryOpen ; 9(12): 1251-1263, 2020 12.
Article in English | MEDLINE | ID: mdl-33318881

ABSTRACT

Aluminum pigments were coated with Fe2O3 and CuO by solution-based thermal decomposition of the urea nitrate compounds hexakisureairon(III)nitrate and tetrakisureacopper(II)nitrate. The deposition process was optimized to obtain homogeneously coated aluminum pigments. The growth of the surface coatings was controlled by investigation with scanning electron microscopy, energy dispersive X-ray spectroscopy and static light scattering as well as infrared, X-ray diffraction and thermogravimetric analysis. The iron precursor showed an incomplete decomposition in solution, incorporating traces of urea molecules inside the coatings while the copper precursor showed complete dissociation accompanied by in situ formation of amine complexes. The amount of organic residues resulting from ligand fragments in the final oxide coatings could be reduced to 22 % for the iron oxide and 12 % for the copper oxide by further temperature treatment in solution (259 °C). Colorimetric investigations of the obtained pigments revealed an excellent hiding power, outperforming the pigments used in current state-of-the-art formulations.

7.
Chemistry ; 26(42): 9319-9329, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-31916288

ABSTRACT

Cobalt-doped zinc oxide single crystals with the shape of hexagonal platelets were synthesized by thermohydrolysis of zinc acetate, cobalt acetate, and hexamethylenetetramine (HMTA) in mixtures of ethanol and water. The mineralization proceeds by a low-temperature dissolution-reprecipitation process from the liquid phase by the formation of basic cobalt zinc salts as intermediates. The crystal shape as well as twin formation of the resulting oxide phase can be influenced by careful choice of the solvent mixture and the amount of doping. An understanding of the course of the reaction was achieved by comprehensive employment of analytical techniques (i.e., SEM, XRD, IR) including an in-depth HRTEM study of precipitates from various reaction stages. In addition, EPR as well as UV/Vis spectroscopic measurements provide information about the insertion of the cobalt dopant into the zincite lattice. The Langmuir-Blodgett (LB) technique is shown to be suitable for depositing coatings of the platelets on glass substrates functionalized with polyelectrolyte multilayers and hence is applied for the formation of monolayers containing domains with ordered tessellation. No major differences are found between deposits on substrates with anionic or cationic surface modification. The adherence to the substrates is sufficient to determine the absolute orientation of the deposited polar single crystals by piezoresponse force microscopy (PFM) and Kelvin probe force microscopy (KPFM) studies.

8.
Physiol Behav ; 210: 112554, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31130296

ABSTRACT

Previous studies on various vertebrates have shown that quantity and quality of food intake affect odour attractiveness as perceived by potential mates. In humans, the quality of body odour is similarly affected by ingested foods, such as by variation in meat and garlic intake. Nevertheless, it is not known whether quantity of food has an impact on human body odour attractiveness. Thus, here we tested how 48 h of complete caloric intake restriction affects the hedonic quality of human axillary odour. Odour samples (cotton pads fixed in both armpits and worn for 12 h) were obtained from healthy female donors across three conditions: i) during their habitual food regime; ii) after 48 h of complete caloric intake restriction (drinking water was provided), and iii) 72 h after restoration of caloric intake. Axillary samples were assessed by male raters regarding their pleasantness, attractiveness, femininity, and intensity. We also collected blood samples to assess physiological changes due to dietary restriction (e.g., glucose, sodium, albumin, and triacylglyceride assays) and anthropometric measurements at the same intervals as body odour samples. We found no differences in pleasantness, attractiveness and intensity between the odour samples collected at baseline and during complete caloric intake restriction. Interestingly, we found that body odours were rated more pleasant, more attractive and less intense after restoration of food intake as compared to the baseline and during caloric restriction. Our results suggest that restoration of food intake positively influences hedonic quality of human body odour which might thus provide cues to current fitness status and metabolic efficiency.


Subject(s)
Caloric Restriction , Odorants , Adolescent , Adult , Affect , Anthropometry , Body Composition , Body Mass Index , Eating , Female , Humans , Male , Young Adult
9.
RSC Adv ; 9(54): 31386-31397, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-35527957

ABSTRACT

Combustion synthesis of dielectric yttrium oxide and aluminium oxide thin films is possible by introducing a molecular single-source precursor approach employing a newly designed nitro functionalized malonato complex of yttrium (Y-DEM-NO21) as well as defined urea nitrate coordination compounds of yttrium (Y-UN 2) and aluminium (Al-UN 3). All new precursor compounds were extensively characterized by spectroscopic techniques (NMR/IR) as well as by single-crystal structure analysis for both urea nitrate coordination compounds. The thermal decomposition of the precursors 1-3 was studied by means of differential scanning calorimetry (DSC) and thermogravimetry coupled with mass spectrometry and infrared spectroscopy (TG-MS/IR). As a result, a controlled thermal conversion of the precursors into dielectric thin films could be achieved. These oxidic thin films integrated within capacitor devices are exhibiting excellent dielectric behaviour in the temperature range between 250 and 350 °C, with areal capacity values up to 250 nF cm-2, leakage current densities below 1.0 × 10-9 A cm-2 (at 1 MV cm-1) and breakdown voltages above 2 MV cm-1. Thereby the increase in performance at higher temperatures can be attributed to the gradual conversion of the intermediate hydroxy species into the respective metal oxide which is confirmed by X-ray photoelectron spectroscopy (XPS). Finally, a solution-processed Y x O y based TFT was fabricated employing the precursor Y-DEM-NO21. The device exhibits decent TFT characteristics with a saturation mobility (µ sat) of 2.1 cm2 V-1 s-1, a threshold voltage (V th) of 6.9 V and an on/off current ratio (I on/off) of 7.6 × 105.

10.
Chem Asian J ; 13(24): 3912-3919, 2018 Dec 18.
Article in English | MEDLINE | ID: mdl-30426698

ABSTRACT

Combustion synthesis of semiconducting amorphous indium gallium zinc oxide IGZO (In:Ga:Zn, 7:1:1.5) thin films was carried out using urea nitrate precursor compounds of indium(III), gallium(III) and zinc(II). This approach provides further understanding towards the oxide formation process under a moderate temperature regime by employment of well-defined coordination compounds. All precursor compounds were fully characterized by spectroscopic techniques as well as by single crystal structure analysis. Their intrinsic thermal decomposition was studied by a combination of differential scanning calorimetry (DSC) and thermogravimetry coupled with mass spectrometry and infrared spectroscopy (TG-MS/IR). For all precursors a multistep decomposition involving a complex redox-reaction pathway under in situ formation of nitrogen containing molecular species was observed. Controlled thermal conversion of a mixture of the indium, gallium and zinc urea nitrate complexes into ternary amorphous IGZO films could thus be achieved. Thin film transistors (TFTs) were fabricated from a defined compositional mixture of the molecular precursors. The TFT devices exhibited decent charge carrier mobilities of 0.4 and 3.1 cm2 /(Vs) after annealing of the deposited films at temperatures as low as 250 and 350 °C, respectively. This approach represents a significant step further towards a low temperature solution processing of semiconducting thin films.

11.
Inorg Chem ; 56(13): 7550-7557, 2017 Jul 03.
Article in English | MEDLINE | ID: mdl-28598153

ABSTRACT

Zinc complexes with multidentate Schiff base ligands are suitable precursors for ZnO in microwave-assisted transformation reactions. [Bis(acetylacetonato)ethylenediimine]zinc(II) and [bis(methylacetoacetato)ethylenediimine]zinc(II) have been synthesized with high purity and good yield from the direct reaction of the respective diimine ligand with diethylzinc in tetrahydrofuran. The thermal decay is studied by thermogravimetry coupled with online infrared spectroscopy. The ceramization reaction in ethoxyethanol yields stable dispersions of spherical ZnO nanoparticles with very small particle sizes (around 5-6 nm), which can be employed for coating and thin-film deposition processes. Field-effect transistors (FETs) composed of thin films fabricated from these semiconducting ZnO particles possess charge-carrier mobilities of 6.0 × 10-3 and 5.4 × 10-2 cm2/(V s) after processing at 350 and 450 °C, respectively. Electrophoretic deposition affords dense film coatings composed of these ZnO nanoparticles with thicknesses of 30-90 nm on ITO (indium tin oxide) glass-electrodes. The positive ζ-potentials of the ZnO nanoparticles in these dispersions are in agreement with the electrocoating process at the cathode.

12.
ACS Appl Mater Interfaces ; 9(25): 21328-21337, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28573850

ABSTRACT

Amorphous zinc tin oxide (ZTO) thin films are accessible by a molecular precursor approach using mononuclear zinc(II) and tin(II) compounds with methoxyiminopropionic acid ligands. Solution processing of two precursor solutions containing a mixture of zinc and tin(II)-methoxyiminopropinato complexes results in the formation of smooth homogeneous thin films, which upon calcination are converted into the desired semiconducting amorphous ZTO thin films. ZTO films integrated within a field-effect transistor (FET) device exhibit an active semiconducting behavior in the temperature range between 250 and 400 °C, giving an increased performance, with mobility values between µ = 0.03 and 5.5 cm2/V s, with on/off ratios increasing from 105 to 108 when going from 250 to 400 °C. Herein, our main emphasis, however, was on an improved understanding of the material transformation pathway from weak to high performance of the semiconductor in a solution-processed FET as a function of the processing temperature. We have correlated this with the chemical composition and defects states within the microstructure of the obtained ZTO thin film via photoelectron spectroscopy (X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy), Auger electron spectroscopy, electron paramagnetic resonance spectroscopy, atomic force microscopy, and photoluminescence investigations. The critical factor observed for the improved performance within this ZTO material could be attributed to a higher tin concentration, wherein the contributions of point defects arising from the tin oxide within the final amorphous ZTO material play the dominant role in governing the transistor performance.

13.
PLoS One ; 10(10): e0141362, 2015.
Article in English | MEDLINE | ID: mdl-26495842

ABSTRACT

Rhesus-positive and Rhesus-negative persons differ in the presence-absence of highly immunogenic RhD protein on the erythrocyte membrane. The biological function of the RhD molecule is unknown. Its structure suggests that the molecular complex with RhD protein transports NH3 or CO2 molecules across the erythrocyte cell membrane. Some data indicate that RhD positive and RhD negative subjects differ in their tolerance to certain biological factors, including, Toxoplasma infection, aging and fatique. Present cross sectional study performed on 3,130 subjects) showed that Rhesus negative subjects differed in many indices of their health status, including incidences of many disorders. Rhesus negative subjects reported to have more frequent allergic, digestive, heart, hematological, immunity, mental health, and neurological problems. On the population level, a Rhesus-negativity-associated burden could be compensated for, for example, by the heterozygote advantage, but for Rhesus negative subjects this burden represents a serious problem.


Subject(s)
Rh-Hr Blood-Group System/genetics , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , Child , Cross-Sectional Studies , Female , Genetic Predisposition to Disease , Health Status , Humans , Incidence , Male , Middle Aged , Polymorphism, Genetic , Young Adult
14.
Chemistry ; 21(35): 12414-20, 2015 Aug 24.
Article in English | MEDLINE | ID: mdl-26179865

ABSTRACT

Heterogeneous dirhodium(II) catalysts based on environmentally benign and biocompatible cellulose nanocrystals (CNC-Rh2) as support material were obtained by ligand exchange between carboxyl groups on the CNC surface and Rh2(OOCCF3)4, as was confirmed by solid-state (19)F and (13)C NMR spectroscopy. On average, two CF3COO(-) groups are replaced during ligand exchange, which is consistent with quantitative analysis by a combination of (19)F NMR spectroscopy and thermogravimetry. CNC-Rh2 catalysts performed well in a model cyclopropanation reaction, in spite of the low dirhodium(II) content on the CNC surface (0.23 mmol g(-1)). The immobilization through covalent bonding combined with the separate locations of binding positions and active sites of CNC-Rh2 guarantees a high stability against leaching and allows the recovery and reuse of the catalyst during the cyclopropanation reaction.


Subject(s)
Cellulose/chemistry , Cyclopropanes/chemistry , Cyclopropanes/chemical synthesis , Nanoparticles/chemistry , Magnetic Resonance Spectroscopy , Solid-Phase Synthesis Techniques
15.
Beilstein J Nanotechnol ; 6: 785-91, 2015.
Article in English | MEDLINE | ID: mdl-25977849

ABSTRACT

Tobacco mosaic virus (TMV) has been employed as a robust functional template for the fabrication of a TMV/zinc oxide field effect transistor (FET). A microwave based approach, under mild conditions was employed to synthesize stable zinc oxide (ZnO) nanoparticles, employing a molecular precursor. Insightful studies of the decomposition of the precursor were done using NMR spectroscopy and material characterization of the hybrid material derived from the decomposition was achieved using dynamic light scattering (DLS), transmission electron microscopy (TEM), grazing incidence X-ray diffractometry (GI-XRD) and atomic force microscopy (AFM). TEM and DLS data confirm the formation of crystalline ZnO nanoparticles tethered on top of the virus template. GI-XRD investigations exhibit an orientated nature of the deposited ZnO film along the c-axis. FET devices fabricated using the zinc oxide mineralized virus template material demonstrates an operational transistor performance which was achieved without any high-temperature post-processing steps. Moreover, a further improvement in FET performance was observed by adjusting an optimal layer thickness of the deposited ZnO on top of the TMV. Such a bio-inorganic nanocomposite semiconductor material accessible using a mild and straightforward microwave processing technique could open up new future avenues within the field of bio-electronics.

16.
Langmuir ; 31(13): 3897-903, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25768914

ABSTRACT

The genetically determined design of structured functional bio/inorganic materials was investigated by applying a convective assembly approach. Wildtype tobacco mosaic virus (wt TMV) as well as several TMV mutants were organized on substrates over macroscopic-length scales. Depending on the virus type, the self-organization behavior showed pronounced differences in the surface arrangement under the same convective assembly conditions. Additionally, under varying assembly parameters, the virus particles generated structures encompassing morphologies emerging from single micrometer long fibers aligned parallel to the triple-contact line through disordered but dense films to smooth and uniform monolayers. Monolayers with diverse packing densities were used as templates to form TMV/ZnO hybrid materials. The semiconducting properties can be directly designed and tuned by the variation of the template architecture which are reflected in the transistor performance.


Subject(s)
Tobacco Mosaic Virus/genetics , Nanostructures , Nanotechnology , Surface Properties
17.
Beilstein J Nanotechnol ; 4: 868-874, 2013.
Article in English | MEDLINE | ID: mdl-24367756

ABSTRACT

Polycrystalline CuInSe2 (CISe) nanorods are promising for the fabrication of highly efficient active layers in solar cells. In this work we report on a nanocasting approach, which uses track-etched polycarbonate films as hard templates for obtaining three-dimensionally (3D) arranged CISe nanorod arrays. Copper and indium ketoacidoximato complexes and selenourea were employed as molecular precursors. Arrays of parallel isolated cylindrical pores of 100 nm nominal diameter and 5 µm length were used for the infiltration of the precursor solution under inert atmosphere, followed by drying, thermal conversion into a preceramic 'green body', a subsequent dissolution of the template, and a final thermal treatment at 450 °C. The nanorods that where synthesised in this way have dimensions equal to the pore sizes of the template. Investigation of the CuInSe2 nanorod samples by spectroscopic and diffraction methods confirmed a high purity and crystallinity, and a stoichiometric composition of the CISe ternary semiconductor compound.

18.
Berl Munch Tierarztl Wochenschr ; 125(9-10): 411-7, 2012.
Article in German | MEDLINE | ID: mdl-23045804

ABSTRACT

Our objective was to evaluate diagnostic tools for the detection of Inclusion Body Disease (IBD) in bold snakes. The aetiology of IBD is unknown, and the disease has non-specific clinical signs, hence there is a need for a clinically-applicable, specific diagnostic method. We examined blood smears and liver biopsies from 26 bold snakes (17 boas and nine pythons; some of which were suspected of having IBD) for the presence of characteristic inclusion bodies. We used haematology, histology and electron microscopy to characterise samples as IBD-positive or -negative. Our results indicate that examination of a simple blood smear is sufficient to diagnose IBD in boas. Inclusion bodies in lymphocytes, erythrocytes and thrombocytes were observed. In both, boas and pythons, we detected inclusion bodies within hepatocytes. We demonstrated also that IBD was more common in boas than in pythons: only samples from two Ball Pythons (Python regius) tested positive, whereas no other Pythonidae were positive. We consider that blood smears represents a rapid, non-invasive technique for detection of IBD.


Subject(s)
Animal Diseases/blood , Animal Diseases/pathology , Boidae , Inclusion Bodies/pathology , Animal Diseases/diagnosis , Animals , Blood Cells/pathology , Hematologic Tests/veterinary , Hepatocytes/pathology , Histological Techniques/veterinary , Microscopy, Electron/veterinary
20.
Dalton Trans ; 40(16): 4307-14, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21412543

ABSTRACT

A novel molecular approach to the synthesis of polycrystalline Cu-doped ZnO rod-like nanostructures with variable concentrations of introduced copper ions in ZnO host matrix is presented. Spectroscopic (PLS, variable temperature XRD, XPS, ELNES, HERFD) and microscopic (HRTEM) analysis methods reveal the +II oxidation state of the lattice incorporated Cu ions. Photoluminescence spectra show a systematic narrowing (tuning) of the band gap depending on the amount of Cu(II) doping. The advantage of the template assembly of doped ZnO nanorods is that it offers general access to doped oxide structures under moderate thermal conditions. The doping content of the host structure can be individually tuned by the stoichiometric ratio of the molecular precursor complex of the host metal oxide and the molecular precursor complex of the dopant, Di-aquo-bis[2-(methoxyimino)-propanoato]zinc(II) 1 and -copper(II) 2. Moreover, these keto-dioximato complexes are accessible for a number of transition metal and lanthanide elements, thus allowing this synthetic approach to be expanded into a variety of doped 1D metal oxide structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...