Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 50(25): 8811-8819, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34095921

ABSTRACT

Alumina thin films are synthesized by combustion synthesis of mixtures of aluminium nitrate (ALN) and methylcarbazate (MCZ). The interdependence of the ratio of oxidizer and reducing agent on composition, microstructure and electronic properties of the resulting oxide layers is investigated. The dielectric and insulating behaviour is improved by addition of different amounts of MCZ (MCZ : ALN = 0.67 or 2.5). In this way films (thickness ∼140 nm) with a dielectric constant κ of 9.7 and a dielectric loss tan δ below 0.015 can be achieved. Medium concentrations of MCZ (MCZ : ALN = 1.0 or 1.5) lead to films with lower performance, though. Our studies indicate two opposing effects of the organic additive. Removal of organic residues during film formation as combustion gases is potentially detrimental. Larger amounts of MCZ, however, cause condensation reactions in the precusor mixture, which improve the microstructure. The porosity of the films can be sucessfully analyzed by positron annihilation liftetime studies. In this way the impact of the organic ligand sphere on the resulting microstructure can be quantified. Samples prepared from ALN alone exhibit mesopores and also larger micropores. In contrast, the formation of mesopores can be inhibited by addition of MCZ.

2.
Chemistry ; 27(38): 9791-9800, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34002896

ABSTRACT

Multilayered heterostructures comprising of In2 O3 , SnO2 , and Al2 O3 were studied for their application in thin-film transistors (TFT). The compositional influence of tin oxide on the properties of the thin-film, as well as on the TFT characteristics is investigated. The heterostructures are fabricated by atomic layer deposition (ALD) at 200 °C, employing trimethylindium (TMI), tetrakis(dimethylamino)tin (TDMASn), trimethylaluminum (TMA), and water as precursors. After post-deposition annealing at 400 °C the thin-films are found to be amorphous, however, they show a discrete layer structure of the individual oxides of uniform film thickness and high optical transparency in the visible region. Incorporation of only two monolayers of Al2 O3 in the active semiconducting layer the formation of oxygen vacancies can be effectively suppressed, resulting in an improved semiconducting and switching behavior. The heterostacks comprising of In2 O3 /SnO2 /Al2 O3 are incorporated into TFT devices, exhibiting a saturation field-effect mobility (µsat ) of 2.0 cm2 ⋅ V-1 s-1 , a threshold-voltage (Vth ) of 8.6 V, a high current on/off ratio (IOn /IOff ) of 1.0×107 , and a subthreshold swing (SS) of 485 mV ⋅ dec-1 . The stability of the TFT under illumination is also altered to a significant extent. A change in the transfer characteristic towards conductive behavior is evident when illuminated with light of an energy of 3.1 eV (400 nm).

3.
Chemistry ; 27(17): 5312, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33538371

ABSTRACT

Invited for the cover of this issue is Jörg J. Schneider and co-workers at Technical University Darmstadt, Helmholtz-Zentrum Dresden-Rossendorf and KIT Karlsruhe. The image depicts the application of high energy generated electron/positron couples which are able to detect defects sites in semiconducting zinc oxide thin films. Read the full text of the article at 10.1002/chem.202004270.

4.
Chemistry ; 27(17): 5422-5431, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33241921

ABSTRACT

Zinc oxide thin films are fabricated by controlled oxidation of sputtered zinc metal films on a hotplate in air at temperatures between 250 and 450 °C. The nanocrystalline films possess high relative densities and show preferential growth in (100) orientation. Integration in thin-film transistors reveals moderate charge carrier mobilities as high as 0.2 cm2 V-1 s-1 . The semiconducting properties depend on the calcination temperature, whereby the best performance is achieved at 450 °C. The defect structure of the thin ZnO film can be tracked by Doppler-broadening positron annihilation spectroscopy as well as positron lifetime studies. Comparably long positron lifetimes suggest interaction of zinc vacancies (VZn ) with one or more oxygen vacancies (VO ) in larger structural entities. Such VO -VZn defect clusters act as shallow acceptors, and thus, reduce the overall electron conductivity of the film. The concentration of these defect clusters decreases at higher calcination temperatures as indicated by changes in the S and W parameters. Such zinc oxide films obtained by conversion of metallic zinc can also be used as seed layers for solution deposition of zinc oxide nanowires employing a mild microwave-assisted process. The functionality of the obtained nanowire arrays is tested in a UV sensor device. The best results with respect to sensor sensitivity are achieved with thinner seed layers for device construction.

5.
ChemistryOpen ; 9(12): 1251-1263, 2020 12.
Article in English | MEDLINE | ID: mdl-33318881

ABSTRACT

Aluminum pigments were coated with Fe2O3 and CuO by solution-based thermal decomposition of the urea nitrate compounds hexakisureairon(III)nitrate and tetrakisureacopper(II)nitrate. The deposition process was optimized to obtain homogeneously coated aluminum pigments. The growth of the surface coatings was controlled by investigation with scanning electron microscopy, energy dispersive X-ray spectroscopy and static light scattering as well as infrared, X-ray diffraction and thermogravimetric analysis. The iron precursor showed an incomplete decomposition in solution, incorporating traces of urea molecules inside the coatings while the copper precursor showed complete dissociation accompanied by in situ formation of amine complexes. The amount of organic residues resulting from ligand fragments in the final oxide coatings could be reduced to 22 % for the iron oxide and 12 % for the copper oxide by further temperature treatment in solution (259 °C). Colorimetric investigations of the obtained pigments revealed an excellent hiding power, outperforming the pigments used in current state-of-the-art formulations.

6.
Chemistry ; 26(42): 9319-9329, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-31916288

ABSTRACT

Cobalt-doped zinc oxide single crystals with the shape of hexagonal platelets were synthesized by thermohydrolysis of zinc acetate, cobalt acetate, and hexamethylenetetramine (HMTA) in mixtures of ethanol and water. The mineralization proceeds by a low-temperature dissolution-reprecipitation process from the liquid phase by the formation of basic cobalt zinc salts as intermediates. The crystal shape as well as twin formation of the resulting oxide phase can be influenced by careful choice of the solvent mixture and the amount of doping. An understanding of the course of the reaction was achieved by comprehensive employment of analytical techniques (i.e., SEM, XRD, IR) including an in-depth HRTEM study of precipitates from various reaction stages. In addition, EPR as well as UV/Vis spectroscopic measurements provide information about the insertion of the cobalt dopant into the zincite lattice. The Langmuir-Blodgett (LB) technique is shown to be suitable for depositing coatings of the platelets on glass substrates functionalized with polyelectrolyte multilayers and hence is applied for the formation of monolayers containing domains with ordered tessellation. No major differences are found between deposits on substrates with anionic or cationic surface modification. The adherence to the substrates is sufficient to determine the absolute orientation of the deposited polar single crystals by piezoresponse force microscopy (PFM) and Kelvin probe force microscopy (KPFM) studies.

7.
RSC Adv ; 9(54): 31386-31397, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-35527957

ABSTRACT

Combustion synthesis of dielectric yttrium oxide and aluminium oxide thin films is possible by introducing a molecular single-source precursor approach employing a newly designed nitro functionalized malonato complex of yttrium (Y-DEM-NO21) as well as defined urea nitrate coordination compounds of yttrium (Y-UN 2) and aluminium (Al-UN 3). All new precursor compounds were extensively characterized by spectroscopic techniques (NMR/IR) as well as by single-crystal structure analysis for both urea nitrate coordination compounds. The thermal decomposition of the precursors 1-3 was studied by means of differential scanning calorimetry (DSC) and thermogravimetry coupled with mass spectrometry and infrared spectroscopy (TG-MS/IR). As a result, a controlled thermal conversion of the precursors into dielectric thin films could be achieved. These oxidic thin films integrated within capacitor devices are exhibiting excellent dielectric behaviour in the temperature range between 250 and 350 °C, with areal capacity values up to 250 nF cm-2, leakage current densities below 1.0 × 10-9 A cm-2 (at 1 MV cm-1) and breakdown voltages above 2 MV cm-1. Thereby the increase in performance at higher temperatures can be attributed to the gradual conversion of the intermediate hydroxy species into the respective metal oxide which is confirmed by X-ray photoelectron spectroscopy (XPS). Finally, a solution-processed Y x O y based TFT was fabricated employing the precursor Y-DEM-NO21. The device exhibits decent TFT characteristics with a saturation mobility (µ sat) of 2.1 cm2 V-1 s-1, a threshold voltage (V th) of 6.9 V and an on/off current ratio (I on/off) of 7.6 × 105.

8.
Chem Asian J ; 13(24): 3912-3919, 2018 Dec 18.
Article in English | MEDLINE | ID: mdl-30426698

ABSTRACT

Combustion synthesis of semiconducting amorphous indium gallium zinc oxide IGZO (In:Ga:Zn, 7:1:1.5) thin films was carried out using urea nitrate precursor compounds of indium(III), gallium(III) and zinc(II). This approach provides further understanding towards the oxide formation process under a moderate temperature regime by employment of well-defined coordination compounds. All precursor compounds were fully characterized by spectroscopic techniques as well as by single crystal structure analysis. Their intrinsic thermal decomposition was studied by a combination of differential scanning calorimetry (DSC) and thermogravimetry coupled with mass spectrometry and infrared spectroscopy (TG-MS/IR). For all precursors a multistep decomposition involving a complex redox-reaction pathway under in situ formation of nitrogen containing molecular species was observed. Controlled thermal conversion of a mixture of the indium, gallium and zinc urea nitrate complexes into ternary amorphous IGZO films could thus be achieved. Thin film transistors (TFTs) were fabricated from a defined compositional mixture of the molecular precursors. The TFT devices exhibited decent charge carrier mobilities of 0.4 and 3.1 cm2 /(Vs) after annealing of the deposited films at temperatures as low as 250 and 350 °C, respectively. This approach represents a significant step further towards a low temperature solution processing of semiconducting thin films.

9.
Inorg Chem ; 56(13): 7550-7557, 2017 Jul 03.
Article in English | MEDLINE | ID: mdl-28598153

ABSTRACT

Zinc complexes with multidentate Schiff base ligands are suitable precursors for ZnO in microwave-assisted transformation reactions. [Bis(acetylacetonato)ethylenediimine]zinc(II) and [bis(methylacetoacetato)ethylenediimine]zinc(II) have been synthesized with high purity and good yield from the direct reaction of the respective diimine ligand with diethylzinc in tetrahydrofuran. The thermal decay is studied by thermogravimetry coupled with online infrared spectroscopy. The ceramization reaction in ethoxyethanol yields stable dispersions of spherical ZnO nanoparticles with very small particle sizes (around 5-6 nm), which can be employed for coating and thin-film deposition processes. Field-effect transistors (FETs) composed of thin films fabricated from these semiconducting ZnO particles possess charge-carrier mobilities of 6.0 × 10-3 and 5.4 × 10-2 cm2/(V s) after processing at 350 and 450 °C, respectively. Electrophoretic deposition affords dense film coatings composed of these ZnO nanoparticles with thicknesses of 30-90 nm on ITO (indium tin oxide) glass-electrodes. The positive ζ-potentials of the ZnO nanoparticles in these dispersions are in agreement with the electrocoating process at the cathode.

10.
Beilstein J Nanotechnol ; 6: 785-91, 2015.
Article in English | MEDLINE | ID: mdl-25977849

ABSTRACT

Tobacco mosaic virus (TMV) has been employed as a robust functional template for the fabrication of a TMV/zinc oxide field effect transistor (FET). A microwave based approach, under mild conditions was employed to synthesize stable zinc oxide (ZnO) nanoparticles, employing a molecular precursor. Insightful studies of the decomposition of the precursor were done using NMR spectroscopy and material characterization of the hybrid material derived from the decomposition was achieved using dynamic light scattering (DLS), transmission electron microscopy (TEM), grazing incidence X-ray diffractometry (GI-XRD) and atomic force microscopy (AFM). TEM and DLS data confirm the formation of crystalline ZnO nanoparticles tethered on top of the virus template. GI-XRD investigations exhibit an orientated nature of the deposited ZnO film along the c-axis. FET devices fabricated using the zinc oxide mineralized virus template material demonstrates an operational transistor performance which was achieved without any high-temperature post-processing steps. Moreover, a further improvement in FET performance was observed by adjusting an optimal layer thickness of the deposited ZnO on top of the TMV. Such a bio-inorganic nanocomposite semiconductor material accessible using a mild and straightforward microwave processing technique could open up new future avenues within the field of bio-electronics.

11.
Langmuir ; 31(13): 3897-903, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25768914

ABSTRACT

The genetically determined design of structured functional bio/inorganic materials was investigated by applying a convective assembly approach. Wildtype tobacco mosaic virus (wt TMV) as well as several TMV mutants were organized on substrates over macroscopic-length scales. Depending on the virus type, the self-organization behavior showed pronounced differences in the surface arrangement under the same convective assembly conditions. Additionally, under varying assembly parameters, the virus particles generated structures encompassing morphologies emerging from single micrometer long fibers aligned parallel to the triple-contact line through disordered but dense films to smooth and uniform monolayers. Monolayers with diverse packing densities were used as templates to form TMV/ZnO hybrid materials. The semiconducting properties can be directly designed and tuned by the variation of the template architecture which are reflected in the transistor performance.


Subject(s)
Tobacco Mosaic Virus/genetics , Nanostructures , Nanotechnology , Surface Properties
12.
Beilstein J Nanotechnol ; 4: 868-874, 2013.
Article in English | MEDLINE | ID: mdl-24367756

ABSTRACT

Polycrystalline CuInSe2 (CISe) nanorods are promising for the fabrication of highly efficient active layers in solar cells. In this work we report on a nanocasting approach, which uses track-etched polycarbonate films as hard templates for obtaining three-dimensionally (3D) arranged CISe nanorod arrays. Copper and indium ketoacidoximato complexes and selenourea were employed as molecular precursors. Arrays of parallel isolated cylindrical pores of 100 nm nominal diameter and 5 µm length were used for the infiltration of the precursor solution under inert atmosphere, followed by drying, thermal conversion into a preceramic 'green body', a subsequent dissolution of the template, and a final thermal treatment at 450 °C. The nanorods that where synthesised in this way have dimensions equal to the pore sizes of the template. Investigation of the CuInSe2 nanorod samples by spectroscopic and diffraction methods confirmed a high purity and crystallinity, and a stoichiometric composition of the CISe ternary semiconductor compound.

14.
Dalton Trans ; 40(16): 4307-14, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21412543

ABSTRACT

A novel molecular approach to the synthesis of polycrystalline Cu-doped ZnO rod-like nanostructures with variable concentrations of introduced copper ions in ZnO host matrix is presented. Spectroscopic (PLS, variable temperature XRD, XPS, ELNES, HERFD) and microscopic (HRTEM) analysis methods reveal the +II oxidation state of the lattice incorporated Cu ions. Photoluminescence spectra show a systematic narrowing (tuning) of the band gap depending on the amount of Cu(II) doping. The advantage of the template assembly of doped ZnO nanorods is that it offers general access to doped oxide structures under moderate thermal conditions. The doping content of the host structure can be individually tuned by the stoichiometric ratio of the molecular precursor complex of the host metal oxide and the molecular precursor complex of the dopant, Di-aquo-bis[2-(methoxyimino)-propanoato]zinc(II) 1 and -copper(II) 2. Moreover, these keto-dioximato complexes are accessible for a number of transition metal and lanthanide elements, thus allowing this synthetic approach to be expanded into a variety of doped 1D metal oxide structures.

15.
Nanoscale ; 3(3): 1102-12, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21183989

ABSTRACT

Cuprous oxide agglomerates composed of 4-10 nm Cu2O nanoparticles were deposited on multiwalled carbon nanotubes (MWCNTs) and on ZnO/MWCNTs to give binary [Cu2O/MWCNT] and ternary [Cu2O/ZnO/MWCNT] composites. Di-aqua-bis[2-(methoxyimino)propanoato]copper Cu[O2CCCH3NOMe](2)·2H2O 1 in DMF was used as single source precursor for the deposition of nanoscaled Cu2O. The precursor decomposes either in air or under argon to yield CuO2 by in situ redox reaction. Thermogravimetric coupled mass spectroscopic analysis (TG-MS) of 1 revealed that methanol formed during the decomposition of 1 acts as a potential in situ reducing agent. Scanning electron microscopy (SEM) of the binary [Cu2O/MWCNT] nano-composite shows an increase of cuprous oxide loading depending on the precursor amount, along the periphery of the MWCNTs as well as formation of larger particle agglomerates. Transmission electron microscopy (TEM) of the sample shows crystalline domains of size 4-10 nm surrounded by an amorphous region within the larger particles. SEM and TEM of ternary [Cu2O/ZnO/MWCNT] clearly reveal that Cu2O nanoparticles are primarily deposited on ZnO rather than on MWCNTs. The catalytic activities of the [Cu2O/MWCNT] and [Cu2O/ZnO/MWCNT] binary and ternary composites were studied for the selective partial oxidation of ethanol to acetaldehyde with molecular oxygen. While using binary [Cu2O/MWCNT] (13.8 wt% Cu) as catalyst, acetaldehyde was obtained with a yield of 87% at 355 °C (selectivity 96% and conversion 91%). When nanoscale ZnO is present, the resulting [Cu2O/ZnO/MWCNT] composite shows preferential hydrogen and CO2 formation due to the fact that the dehydrogenation and total oxidation pathway is more favoured compared to the binary composite. Significant morphological changes of the catalyst during the catalytic process were observed.


Subject(s)
Copper/chemistry , Ethanol/chemistry , Nanostructures/chemistry , Zinc Oxide/chemistry , Catalysis , Materials Testing , Nanostructures/ultrastructure , Oxidation-Reduction , Particle Size
16.
Nanoscale ; 2(4): 613-22, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20644767

ABSTRACT

ZnO (8-10 nm), gold (10-50 nm), and platinum (2-5 nm) nanoparticles were deposited on monoliths of regularly arranged three-dimensional (3D) carbon nanotubes of 40 nm diameter and length up to 30 microm. The single-source precursor complex di-aqua-bis[2-(methoxyimino)propanato](2)Zn(ii) in dimethylformamide was used for the deposition of nanoparticulate ZnO on an ordered 3D CNT scaffold by solution-phase deposition at temperatures as low as 150 degrees C. Au and Pt nanoparticles were deposited by the spontaneous reduction of aqueous solutions of HAuCl(4) and K(2)PtCl(4) on the surface of the macroscopic 3D CNT scaffolds. X-Ray diffraction (XRD) and transmission electron microscopy (TEM) indicate the crystalline nature and nanosize structure of the deposited ZnO, Au and Pt nanoparticles. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations revealed a dense and homogeneous decoration of the individual CNTs throughout the 3D CNT scaffold structure. Thus the nanovoids of the carbon scaffold structure are therefore completely accessible leading to a homogenous particle deposition on the complete CNT outer surface. The kinetics of the spontaneous reduction of gold(iii) and platinum(ii) ions on the CNTs of the scaffold was followed by UV-vis spectroscopy and indicate (i) first-order reaction kinetics with respect to Au(3+) and Pt(2+) concentration and (ii) that the rate of reduction of Au(3+) is one order of magnitude slower than that of Pt(2+).


Subject(s)
Gold/chemistry , Nanotubes, Carbon/chemistry , Platinum/chemistry , Zinc Oxide/chemistry , Kinetics , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Nanotubes, Carbon/ultrastructure , Oxidation-Reduction , Spectrophotometry, Ultraviolet
18.
Chemistry ; 16(7): 2300-8, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20029915

ABSTRACT

Gold nanoparticles of 10-24 and 5-8 nm in size were obtained by chemical citrate reduction and UV photoreduction, respectively, on acid-treated multiwalled carbon nanotubes (MWCNTs) and on ZnO/MWCNT composites. The shape and size of the deposited Au nanoparticles were found to be dependent upon the synthetic method used. Single-crystalline, hexagonal gold particles were produced in the case of UV photoreduction on ZnO/MWCNT, whereas spherical Au particles were deposited on MWCNT when the chemical citrate reduction method was used. In the UV photoreduction route, n-doped ZnO serves as the e(-) donor, whereas the solvent is the hole trap. All materials were fully characterised by UV/Vis spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and BET surface analysis. The catalytic activity of the composites was studied for the selective hydrogenation of alpha,beta-unsaturated carbonyl compound 3,7-dimethyl-2,6-octadienal (citral). The Au/ZnO/MWCNT composite favours the formation of unsaturated alcohols (selectivity=50% at a citral conversion of 20%) due to the presence of single-crystalline, hexagonal gold particles, whereas saturated aldehyde formation is favoured in the case of the Au/MWCNT nanocomposite that contains spherical gold particles.

SELECTION OF CITATIONS
SEARCH DETAIL
...