Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Therm Biol ; 119: 103761, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38101164

ABSTRACT

Seasonal temperature changes and local variations in the water column challenge lentic zooplankton in their habitat. At the cellular level, exposure to varying temperatures affects the mitochondrial functional properties of poikilothermic organisms. Metabolic enzymes that supply reduced substrates to the electron transport chain and elements of the oxidative phosphorylation system must therefore adjust their activity and flux rates to the altered temperature conditions. In the present study, Daphnia magna respiration was analyzed in response to acute and chronic changes in ambient temperature. Oxygen consumption as well as substrate and electron flux rates were measured at the animals' acclimation temperature and at two additional acute temperatures. High activity of citrate synthase (CS) in cold-acclimated animals (10 °C) may have resulted from mitochondrial quantitative adjustments. However, thermal sensitivity of the functional properties of mitochondrial enzymes was greater in warm-acclimated animals (30 °C). In whole animals, temperature-induced changes were partly compensated by acclimation, but these changes were promoted by acclimation in the case of the mitochondrial electron transport chain. Thus, respiration realised in whole animals was limited by the provision of reduced substrates in the tricarboxylic acid cycle rather than by restrictions of the respiratory chain complexes. This may minimize production of reactive oxygen species and resulting damage and reduce waste of substrates from the animals' energy reserves. Still, the integrated biomarker response indicated increased defense against oxidative stress at elevated temperatures.


Subject(s)
Daphnia magna , Mitochondria , Animals , Temperature , Mitochondria/metabolism , Acclimatization/physiology , Respiration
2.
Article in English | MEDLINE | ID: mdl-33662567

ABSTRACT

Zooplankton organisms face a variable food supply in their habitat. Metabolic adjustments during periods of starvation were analysed from changes in metabolite level to gene expression in the microcrustacean Daphnia pulex during starvation. The animals exploited their carbohydrate stores first, but their lipid and protein reserves were also degraded, albeit more slowly. Glycogenolysis and probably gluconeogenesis led to hyperglycaemia after 16 h of starvation. The concentration of α-ketoglutarate and the rate of oxygen consumption also reached maxima during this period. Nuclear HIF-1α levels and α-ketoglutarate concentration showed inverse correlation. Effects of this 2-oxoacid on prolyl hydroxylase activity, HIF-1α stability and the role of this transcription factor in the changes of the expression level of several putatively HIF-1-mediated metabolic genes are discussed. Transcriptome profiling via RNA-Seq revealed a downregulation of genes for protein biosynthesis and an upregulation of genes for carbohydrate metabolism during starvation. Thus, the adjustments of energy metabolism in response to food deprivation were quantified from the level of metabolites, signal transduction and gene expression, and possible connections of the respective dynamics of observed changes were analysed.


Subject(s)
Arthropod Proteins/biosynthesis , Daphnia/metabolism , Energy Metabolism , Gene Expression Regulation , Gluconeogenesis , Glycogenolysis , Animals , Starvation/metabolism
3.
Zoology (Jena) ; 144: 125881, 2021 02.
Article in English | MEDLINE | ID: mdl-33260080

ABSTRACT

Contamination of freshwater habitats with microplastic is threatening particularly filter-feeders within the aquatic community. Using Daphnia magna and Daphnia pulex as models, the effects of food supply and temperature on the ingestion of polystyrene spheres (diameter 1 µm, concentration of 200 ng*ml-1) was analysed. The ingestion rates of microplastic beads were increased in conditions of low food and high temperatures, reflecting the complex regulation patterns of the water current generated by the animals' thoracic limbs. Maximal enrichment of 1160 times the concentration in the ambient medium was observed within one hour. Analyses of the impact of microplastic ingestion on physiological parameters used the carbohydrate concentration as an indicator for the animals' metabolic state. Exposure to the microplastic beads for three days in the presence or absence of Desmodesmus subspicatus did not affect the animals' glycogen reserves beyond the response to the prevailing food and temperature conditions. Projecting the insights from laboratory experiments to the habitat situation, increased burdens of microplastic particles can be expected in filtering zooplankton organisms in warm water and scarce supply of food, like the clear-water phase of lakes in the summer.


Subject(s)
Daphnia , Microplastics , Water Pollutants, Chemical , Animals , Feeding Behavior , Fresh Water , Hot Temperature
4.
Cell Signal ; 62: 109330, 2019 10.
Article in English | MEDLINE | ID: mdl-31152844

ABSTRACT

Signalling pathways provide a fine-tuned control network for catabolic and anabolic cellular processes under changing environmental conditions (e.g. changes in oxygen partial pressure, Po2). These pathways frequently activate or deactivate transcription factors (TFs) in the cytoplasm, with the subsequent nuclear translocation of activated TFs constituting a prerequisite for gene control and expression. This study introduces a newly developed fluorometric method for the quantification of relationships between environmental factors and the subcellular localization of reporter-coupled TFs in Caenorhabditis elegans (and possibly other transparent organisms). We applied this method to determine and analyse the relationship between Po2 and the subcellular localization of the GFP-coupled transcription factor DAF-16 (FoxO) of the DAF-2 (insulin/IGF-1) signalling pathway via the DAF-16::GFP fluorescence intensity of whole worms (Po2 characteristic). The Po2 characteristic resembled the Po2-specific metabolic rate of C. elegans, with a critical Po2 (Pco2) of 3.6 kPa separating two Po2 ranges, where either anaerobic metabolism and DAF-16::GFP nuclear occupancy strongly increased (i.e. decreasing DAF-16::GFP fluorescence intensity) (Po2 < Pco2) or aerobic metabolism and DAF-16::GFP cytoplasmic localization prevailed (Po2 > Pco2). These results and other data, which included the Po2-specific mitochondrial oxidation-reduction state of whole worms (as determined using the endogenous NADH fluorescence) and the effects of higher levels of reactive oxygen species (ROS) or RNAi-mediated knockdowns of catabolic or anabolic control genes (aak-2 or let-363) on the Po2 characteristic, suggest that ROS play a decisive role for DAF-16 nuclear translocation due to tissue hypoxia or higher anabolic activity induced by aak-2(RNAi). As DAF-16 and its target genes are of central importance for the cellular stress resistance, ROS-mediated relationships between metabolism and DAF-16 subcellular (i.e. nuclear) localization provide protection of the cell machinery against elevated ROS formation under challenging metabolic conditions.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Forkhead Transcription Factors/genetics , Insulin/genetics , Longevity/genetics , Animals , Caenorhabditis elegans/genetics , Cell Nucleus/genetics , Gene Expression Regulation, Developmental/genetics , Gene Knockdown Techniques , Insulin-Like Growth Factor I/genetics , Mitochondria/genetics , Mitochondria/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Receptor, Insulin/genetics
5.
Biol Cell ; 109(1): 39-64, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27515976

ABSTRACT

BACKGROUND INFORMATION: Heat stress in ectotherms involves direct (e.g. protein damage) and/or indirect effects (temperature-induced hypoxia and ROS formation), which cause activation of the transcription factors (TF) heat shock factor 1 (HSF-1) and/or hypoxia-inducible factor 1 (HIF-1). The present study focused on the links between stress (ROS) signals, nuclear (n) and cytoplasmic (c) HSF-1/HIF-1 levels, and stress gene expression on mRNA and protein levels (e.g. heat-shock protein 90, HSP90) upon acute heat and ROS (H2 O2 ) stress. RESULTS: Acute heat stress (30°C) evoked fluctuations in ROS level. Different feeding regimens, which affected the glutathione (GSH) level, allowed altering the frequency of ROS fluctuations. Other data showed fluctuation frequency to depend also on ROS production rate. The heat-induced slow or fast ROS fluctuations (at high or low GSH levels) evoked slow or fast fluctuations in the levels of nHIF-1α, nHSF-1 and gene products (mRNAs and protein), albeit after different time delays. Time delays to ROS fluctuations were, for example,shorter for nHIF-1α than for nHSF-1 fluctuations, and nHIF-1α fluctuations preceded and nHSF-1 fluctuations followed fluctuations in HSP90 mRNA level. Cytoplasmic TF levels either changed little (cHIF-1α) or showed a steady increase (cHSF-1). Applying acute H2 O2 stress (at 20°C) revealed effects on nHIF-1α and mRNA levels, but no significant effects on nHSF-1 level. Transcriptome data additionally showed coordinated fluctuations of mRNA levels upon acute heat stress, involving mRNAs for HSPs and other stress proteins, with all corresponding genes carrying DNA binding motifs for HIF-1 and HSF-1. CONCLUSIONS: This study provided evidence for promoting effects of ROS and HIF-1 on early haemoglobin, HIF-1α and HSP90 mRNA expressions upon heat or ROS stress. The increasing cHSF-1 level likely affected nHSF-1 level and later HSP90 mRNA expression. SIGNIFICANCE: Heat stress evoked ROS fluctuations, with this stress signal forwarded via nHIF-1 and nHSF-1 fluctuations to stress gene expression. The frequency of ROS fluctuations seemed to integrate information about ROS productionrate and GSH antioxidant buffer capacity, resulting in stress protein expression of different speed. Results of this study suggest ROS as early (pre-damage) and protein defects as later (post-damage) stress signals to trigger heat stress responses.


Subject(s)
DNA-Binding Proteins/metabolism , Daphnia/physiology , Gene Expression Regulation , Heat-Shock Response , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Reactive Oxygen Species/metabolism , Transcription Factors/metabolism , Animals , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , DNA-Binding Proteins/genetics , Daphnia/genetics , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Heat Shock Transcription Factors , Hemoglobins/genetics , Hemoglobins/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , RNA, Messenger/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...