Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 3437, 2024 02 10.
Article in English | MEDLINE | ID: mdl-38341445

ABSTRACT

Increasing dorsolateral prefrontal cortex (DLPFC) activity by anodal transcranial direct current stimulation (tDCS) enhances cognitive control and might reduce aggression. The Val158Met polymorphism within the catechol-O-methyltransferase gene (rs4680) plays a pivotal role in prefrontal dopamine signaling, displaying associations with aggressive behavior, and potentially influencing the effects of tDCS. In a double-blind, sham-controlled study, we investigated the influence of rs4680 on tDCS effects on aggression. While undergoing functional magnetic resonance imaging, 89 healthy male participants performed the Taylor aggression paradigm before and immediately after tDCS. Actively stimulated participants (n = 45) received anodal tDCS (1.5 mA) for 20 min targeting the right DLPFC. Carriers of the val-allele (val+; n = 46; active tDCS n = 23) were compared to met-allele homozygotes (val-; n = 43; active tDCS n = 22). Analysis revealed decreased aggressive behavior in the val- group following active tDCS (p < 0.001). The val+ group showed increased aggression during the second session (p < 0.001) with an even higher increase following active as compared to sham tDCS (p < 0.001). No effects of stimulation or rs4680 on brain activation were found. Our study provides evidence for opposite tDCS effects on aggressive behavior in val-carriers and val-noncarriers. By shedding light on genetic factors predicting tDCS responsivity, the study will help to pave the way toward individualized-and thus more effective-tDCS treatment options.


Subject(s)
Transcranial Direct Current Stimulation , Humans , Male , Transcranial Direct Current Stimulation/methods , Aggression , Catechol O-Methyltransferase/genetics , Prefrontal Cortex/physiology , Polymorphism, Genetic , Double-Blind Method
2.
Cereb Cortex ; 33(8): 4654-4664, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36124828

ABSTRACT

The failure to adequately regulate negative emotions represents a prominent characteristic of violent offenders. In this functional magnetic resonance imaging study, we used technical, nonsocial frustration to elicit anger in violent offenders (n = 19) and then increased the provocation by adding personal insults (social provocation). The aim was to investigate neural connectivity patterns involved in anger processing, to detect the effect of increasing provocation by personal insult, and to compare anger-related connectivity patterns between offenders and noncriminal controls (n = 12). During technical frustration, the offenders showed increased neural connectivity between the amygdala and prefrontal cortex compared to the controls. Conversely, personal insults, and thus increased levels of provocation, resulted in a significant reduction of neural connectivity between regions involved in cognitive control in the offenders but not controls. We conclude that, when (nonsocially) frustrated, offenders were able to employ regulatory brain networks by displaying stronger connectivity between regulatory prefrontal and limbic regions than noncriminal controls. In addition, offenders seemed particularly sensitive to personal insults, which led to increased implicit aggression (by means of motoric responses) and reduced connectivity in networks involved in cognitive control (including dorsomedial prefrontal cortex, precuneus, middle/superior temporal regions).


Subject(s)
Criminals , Humans , Criminals/psychology , Aggression/physiology , Aggression/psychology , Brain/diagnostic imaging , Anger/physiology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology , Brain Mapping , Magnetic Resonance Imaging , Emotions/physiology
3.
Soc Cogn Affect Neurosci ; 17(1): 120-130, 2022 02 03.
Article in English | MEDLINE | ID: mdl-33227131

ABSTRACT

Increased aggression and impulsivity represent a key component of several psychiatric disorders, including substance use disorder, which is often associated with deficient prefrontal brain activation. Thus, innovative tools to increase cognitive control are highly warranted. The current study investigates the potential of transcranial direct current stimulation (tDCS), a tool to modulate cortical activation and to increase cognitive control in individuals with a high potential for impulsive and aggressive behavior. In a double-blind, sham-controlled study, we applied anodal tDCS over the right dorsolateral prefrontal cortex in an all-male sample of alcohol-dependent patients (AD), tobacco users (TU) and healthy controls (HC), who completed the Taylor Aggression Paradigm and Stop Signal Reaction Time Task twice. While there were no observable effects of tDCS in controls, the results revealed altered aggressive behavior in AD following active stimulation. Specifically, these individuals did not show the standard increase in aggression over time seen in the other groups. Furthermore, improved response inhibition was found in AD and TU following active but not sham stimulation. Our study demonstrates that prefrontal tDCS improves our laboratory measure of impulse control in at-risk groups, illustrating the importance of sample characteristics such as nicotine intake and personality traits for understanding the effects of brain stimulation.


Subject(s)
Transcranial Direct Current Stimulation , Aggression/physiology , Double-Blind Method , Humans , Impulsive Behavior/physiology , Male , Prefrontal Cortex/physiology , Reaction Time , Transcranial Direct Current Stimulation/methods
4.
J Clin Med ; 10(13)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202355

ABSTRACT

Due to the lack of suitable organs transplant surgeons have to accept unfavorable extended criteria donor (ECD) organs. Recently, we demonstrated that the perfusion of kidney organs with anti-human T-lymphocyte globulin (ATLG) prior to transplantation ameliorates ischemia-reperfusion injury (IRI). Here, we report on the results of perioperative ATLG perfusion in a randomized, single-blinded, placebo-controlled, feasibility trial (RCT) involving 30 liver recipients (LTx). Organs were randomly assigned for perfusion with ATLG/Grafalon® (AP) (n = 16) or saline only (control perfusion = CP) (n = 14) prior to implantation. The primary endpoint was defined as graft function reflected by aspartate transaminase (AST) values at day 7 post-transplantation (post-tx). With respect to the primary endpoint, no significant differences in AST levels were shown in the intervention group at day 7 (AP: 53.0 ± 21.3 mg/dL, CP: 59.7 ± 59.2 mg/dL, p = 0.686). Similarly, exploratory analysis of secondary clinical outcomes (e.g., patient survival) and treatment-specific adverse events revealed no differences between the study groups. Among liver transplant recipients, pre-operative organ perfusion with ATLG did not improve short-term outcomes, compared to those who received placebo perfusion. However, ATLG perfusion of liver grafts was proven to be a safe procedure without the occurrence of relevant adverse events.

5.
Brain Struct Funct ; 225(7): 2017-2028, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32591929

ABSTRACT

Aggression and psychopathy are multifaceted conditions determined interpersonal and antisocial factors. Only a few studies analyze the link between these separate factors and specific brain morphology distinctively. A voxel-based morphometry (VBM) analysis was performed on 27 violent offenders and 27 controls aiming to associate sub-features of aggressive and psychopathic behavior with specific gray matter volumes. Trait aggression was assessed using two self-report tests (Aggression Questionnaire, AQ, and Reactive-Proactive-Aggression Questionnaire, RPQ) and psychopathy with the Psychopathy Checklist-Revised (PCL-R). Total and sub-scale scores of these tests were correlated to the brain morphometry of the offenders group in separate analyses. It was found that psychopathic behavior was negatively correlated with prefrontal gray matter volume and that this result was primarily driven by the antisocial behavior sub-scale of the PCL-R. Furthermore, less gray matter in right superior frontal and left inferior parietal regions with increasing antisocial behavior could be observed. One cluster comprising the right middle and superior temporal gyrus was negatively correlated with both, reactive aggression and antisocial behavior. These results outline (1) the importance of distinctively analyzing sub-features that contribute to aggressive and psychopathic behavior, given that the negative correlation of psychopathy global scores with prefrontal volume was driven by one single facet of the PCL-R scale (antisocial behavior). Moreover, these results indicate (2) fronto-temporo-parietal network deficits in antisocial, criminal offenders, with a particular strong effect in the temporal lobe.


Subject(s)
Aggression/psychology , Antisocial Personality Disorder/diagnostic imaging , Brain/diagnostic imaging , Criminals/psychology , Gray Matter/diagnostic imaging , Adolescent , Adult , Antisocial Personality Disorder/psychology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Young Adult
7.
J Vis Exp ; (158)2020 04 17.
Article in English | MEDLINE | ID: mdl-32364540

ABSTRACT

While both living donation and donation after circulatory death provide alternative opportunities for organ transplantation, donation after donor brain death (BD) still represents the major source for solid transplants. Unfortunately, the irreversible loss of brain function is known to induce multiple pathophysiological changes, including hemodynamic as well as hormonal modifications, finally leading to a systemic inflammatory response. Models that allow a systematic investigation of these effects in vivo are scarce. We present a murine model of BD induction, which could aid investigations into the devastating effects of BD on allograft quality. After implementing intra-arterial blood pressure measurement via the common carotid artery and reliable ventilation via a tracheostomy, BD is induced by steadily increasing intracranial pressure using a balloon catheter. Four hours after BD induction, organs may be harvested for analysis or for further transplantation procedures. Our strategy enables the comprehensive analysis of donor BD in a murine model, therefore allowing an in-depth understanding of BD-related effects in solid organ transplantation and potentially paving the way to optimized organ preconditioning.


Subject(s)
Arteries/physiopathology , Blood Pressure Determination , Brain Death/physiopathology , Monitoring, Physiologic , Respiration, Artificial , Tracheostomy , Animals , Blood Pressure , Brain/physiopathology , Brain Death/blood , Brain Death/immunology , Humans , Immune System/pathology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Organ Transplantation/methods , Transplantation, Homologous
8.
Neuropharmacology ; 156: 107467, 2019 09 15.
Article in English | MEDLINE | ID: mdl-30552906

ABSTRACT

Current models of aggression suggest that in addition to personality traits and environmental factors, biological vulnerability associated with genetics substantially impacts aggressive behavior. In a functional imaging study, we investigated the influence of the single nucleotide polymorphism of the mu 1 subtype opioid receptor gene (OPRM1), implicated in sociability, on correlates of trait and state aggression to delineate the function of these influences in aggression. A key aim was further to differentiate different aspects of aggressive reactions - namely, the reaction to provocation and the decision to punish an opponent. 59 healthy males performed a modified Taylor Aggression Paradigm during functional magnetic resonance imaging. The implementation of the paradigm allowed for individual assessments of the decision to behave aggressively, the experience of provocation and the ramification of punishment for the participant or the opponent. The influence of variation in the OPRM1 gene was measured by the functional A118G polymorphism. G allele carriers showed lower levels of general aggression and self-reported physical aggression. Additionally, these participants exhibited increased activation in dorsolateral prefrontal, orbitofrontal, anterior cingulate and insular cortices when choosing higher punishments for the opponent. The OPRM1 polymorphism did not influence aggression in reaction to social provocation. Thus, we suggest that this genetic variant affects one's trait aggressiveness rather than actual behavioral reactivity to provocation. Investigating brain regions that are specifically linked to provocation yielded activation in cortico-limbic circuits which might mediate the evaluation of provocation and the experience of anger and thus shed light on neural processes underlying the risk for aggressive behavior. This article is part of the Special Issue entitled 'Current status of the neurobiology of aggression and impulsivity'.


Subject(s)
Aggression/physiology , Brain/physiology , Decision Making/physiology , Receptors, Opioid, mu/physiology , Adult , Alleles , Brain Mapping , Humans , Magnetic Resonance Imaging , Male , Personality Inventory , Polymorphism, Single Nucleotide , Receptors, Opioid, mu/genetics , Young Adult
9.
Front Immunol ; 9: 1911, 2018.
Article in English | MEDLINE | ID: mdl-30197644

ABSTRACT

Introduction: Although prone to a higher degree of ischemia reperfusion injury (IRI), the use of extended criteria donor (ECD) organs has become reality in transplantation. We therefore postulated that peri-operative perfusion of renal transplants with anti-human T-lymphocyte globulin (ATLG) ameliorates IRI and results in improved graft function. Methods: We performed a randomized, single-blinded, placebo-controlled trial involving 50 kidneys (KTx). Prior to implantation organs were perfused and incubated with ATLG (AP) (n = 24 kidney). Control organs (CP) were perfused with saline only (n = 26 kidney). Primary endpoint was defined as graft function reflected by serum creatinine at day 7 post transplantation (post-tx). Results: AP-KTx recipients illustrated significantly better graft function at day 7 post-tx as reflected by lower creatinine levels, whereas no treatment effect was observed after 12 months surveillance. During the early hospitalization phase, 16 of the 26 CP-KTx patients required dialysis during the first 7 days post-tx, whereas only 10 of the 24 AP-KTx patients underwent dialysis. No treatment-specific differences were detected for various lymphocytes subsets in the peripheral blood of patients. Additionally, mRNA analysis of 0-h biopsies post incubation with ATLG revealed no changes of intragraft inflammatory expression patterns between AP and CP organs. Conclusion: We here present the first clinical study on peri-operative organ perfusion with ATLG illustrating improved graft function in the early period post kidney transplantation. Clinical Trial Registration: www.ClinicalTrials.gov, NCT03377283.


Subject(s)
Antilymphocyte Serum/administration & dosage , Delayed Graft Function/prevention & control , Graft Enhancement, Immunologic/methods , Graft Survival/drug effects , Kidney Transplantation , Adult , Aged , Animals , Delayed Graft Function/metabolism , Delayed Graft Function/pathology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Rabbits , Time Factors
10.
Front Behav Neurosci ; 8: 363, 2014.
Article in English | MEDLINE | ID: mdl-25368560

ABSTRACT

We previously developed rat experimental models based on the conditioned place preference (CPP) paradigm in which only four 15-min episodes of dyadic social interaction with a sex- and weight-matched male Sprague Dawley (SD) rat (1) reversed CPP from cocaine to social interaction despite continuing cocaine training, and (2) prevented the reacquisition/re-expression of cocaine CPP. In a concurrent conditioning schedule, pairing one compartment with social interaction and the other compartment with 15 mg/kg cocaine injections, rats spent the same amount of time in both compartments and the most rewarding sensory component of the composite stimulus social interaction was touch (taction). In the present study, we validated our experimental paradigm in C57BL/6 mice to investigate if our experimental paradigm may be useful for the considerable number of genetically modified mouse models. Only 71% of the tested mice developed place preference for social interaction, whereas 85% of the rats did. Accordingly, 29% of the mice developed conditioned place aversion (CPA) to social interaction, whereas this was true for only 15% of the rats. In support of the lesser likelihood of mice to develop a preference for social interaction, the average amount of time spent in direct contact was 17% for mice vs. 79% for rats. In animals that were concurrently conditioned for social interaction vs. cocaine, the relative reward strength for cocaine was 300-fold higher in mice than in rats. Considering that human addicts regularly prefer drugs of abuse to drug-free social interaction, the present findings suggest that our experimental paradigm of concurrent CPP for cocaine vs. social interaction is of even greater translational power if performed in C57BL/6 mice, the genetic background for most transgenic rodent models, than in rats.

SELECTION OF CITATIONS
SEARCH DETAIL
...