Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 22(1): 71-5, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22172695

ABSTRACT

The design of a new clinical candidate histamine-H(3) receptor antagonist for the potential treatment of excessive daytime sleepiness (EDS) is described. Phenethyl-R-2-methylpyrrolidine containing biphenylsulfonamide compounds were modified by replacement of the sulfonamide linkage with a sulfone. One compound from this series, 2j (APD916) increased wakefulness in rodents as measured by polysomnography with a duration of effect consistent with its pharmacokinetic properties. The identification of a suitable salt form of 2j allowed it to be selected for further development.


Subject(s)
Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Histamine Antagonists/chemistry , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Receptors, Histamine H3/chemistry , Sulfones/chemistry , Animals , Area Under Curve , Brain/metabolism , Central Nervous System/drug effects , Chemistry, Pharmaceutical/methods , Drug Design , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/chemistry , Histamine Antagonists/pharmacokinetics , Humans , Inhibitory Concentration 50 , Mice , Models, Chemical , Pyrrolidines/antagonists & inhibitors , Rats , Sleep/drug effects , Temperature , Wakefulness/drug effects
2.
J Med Chem ; 52(18): 5603-11, 2009 Sep 24.
Article in English | MEDLINE | ID: mdl-19722526

ABSTRACT

Antagonism of the histamine-H(3) receptor is one tactic being explored to increase wakefulness for the treatment of disorders such as excessive daytime sleepiness (EDS) as well as other sleep or cognitive disorders. Phenethyl-R-2-methylpyrrolidine containing biphenylsulfonamide compounds were shown to be potent and selective antagonists of the H(3) receptor. Several of these compounds demonstrated in vivo activity in a rat model of (R)-alpha-methyl histamine (RAMH) induced dipsogenia, and one compound (4e) provided an increase in wakefulness in rats as measured by polysomnographic methods. However, more detailed analysis of the PK/PD relationship suggested the presence of a common active metabolite which may preclude this series of compounds from further development.


Subject(s)
Biphenyl Compounds/chemistry , Drug Design , Drug Inverse Agonism , Histamine Antagonists/chemistry , Histamine Antagonists/pharmacology , Receptors, Histamine H3/metabolism , Sulfonamides/chemistry , Sulfonamides/pharmacology , Administration, Oral , Animals , Histamine Antagonists/administration & dosage , Histamine Antagonists/pharmacokinetics , Humans , Male , Rats , Rats, Sprague-Dawley , Sulfonamides/administration & dosage , Sulfonamides/pharmacokinetics , Thirst/drug effects , Wakefulness/drug effects
3.
Bioorg Med Chem Lett ; 18(14): 4133-6, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18554904

ABSTRACT

A new series of H(3) antagonists derived from the natural product Conessine are presented. Several compounds from these new series retain the potency and selectivity of earlier diamine based analogs while exhibiting improved PK characteristics. One compound (3u) demonstrated functional antagonism of the H(3) receptor in an in vivo pharmacological model.


Subject(s)
Alkaloids/pharmacokinetics , Chemistry, Pharmaceutical/methods , Histamine Antagonists/pharmacology , Receptors, Histamine H3/chemistry , Animals , Binding, Competitive/drug effects , Central Nervous System/drug effects , Drug Design , Histamine Antagonists/chemistry , Kinetics , Models, Chemical , Molecular Structure , Rats , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 18(4): 1490-4, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18194865

ABSTRACT

A new family of Histamine H(3) receptor antagonists (5a-t) has been prepared based on the structure of the natural product Conessine, a known H(3) antagonist. Several members of the new series are highly potent and selective binders of rat and human H(3) receptors and display inverse agonism at the human H(3) receptor. Compound 5n exhibited promising rat pharmacokinetic properties and demonstrated functional antagonism of the H(3) receptor in an in-vivo pharmacological model.


Subject(s)
Alkaloids/chemical synthesis , Alkaloids/pharmacology , Amines/chemical synthesis , Amines/pharmacology , Histamine H3 Antagonists/chemical synthesis , Histamine H3 Antagonists/pharmacology , Alkaloids/chemistry , Amines/chemistry , Animals , CHO Cells , Cricetinae , Cricetulus , Drug Design , Histamine Agonists/pharmacology , Histamine H3 Antagonists/metabolism , Humans , Kinetics , Pyrrolidines/chemical synthesis , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Rats , Receptors, Histamine H3/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...