Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 33(23): e2100518, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33951236

ABSTRACT

Low-dimensional organic-inorganic perovskites synergize the virtues of two unique classes of materials featuring intriguing possibilities for next-generation optoelectronics: they offer tailorable building blocks for atomically thin, layered materials while providing the enhanced light-harvesting and emitting capabilities of hybrid perovskites. This work goes beyond the paradigm that atomically thin materials require in-plane covalent bonding and reports single layers of the 1D organic-inorganic perovskite [C7 H10 N]3 [BiCl5 ]Cl. Its unique 1D-2D structure enables single layers and the formation of self-trapped excitons, which show white-light emission. The thickness dependence of the exciton self-trapping causes an extremely strong shift of the emission energy. Thus, such 2D perovskites demonstrate that already 1D covalent interactions suffice to realize atomically thin materials and provide access to unique exciton physics. These findings enable a much more general construction principle for tailoring and identifying 2D materials that are no longer limited to covalently bonded 2D sheets.

2.
Nano Lett ; 12(12): 6180-6, 2012 Dec 12.
Article in English | MEDLINE | ID: mdl-23145491

ABSTRACT

We show that the photoluminescence intensity of GaN and InGaN nanowires in electrolytes sensitively responds to variations of the pH value and the applied bias. The realization of an electrochemical working point allows pH detection with a resolution better than 0.05 pH. The observed effects are attributed to bias-dependent nonradiative recombination processes competing with interband transitions. The results show that group III-nitride nanowires are excellently suited as nanophotonic pH sensor elements.


Subject(s)
Gallium/chemistry , Indium/chemistry , Nanowires/chemistry , Electrochemical Techniques , Electrolytes/chemistry , Hydrogen-Ion Concentration , Luminescence
3.
Phys Rev Lett ; 92(4): 047603, 2004 Jan 30.
Article in English | MEDLINE | ID: mdl-14995405

ABSTRACT

Electron paramagnetic resonance and electron nuclear double resonance (ENDOR) experiments on ZnO nanoparticles reveal the presence of shallow donors related to interstitial Li and Na atoms. The shallow character of the wave function is evidenced by the multitude of 67Zn ENDOR lines and further by the hyperfine interactions with the 7Li and 23Na nuclei that are much smaller than for atomic lithium and sodium. In the case of the Li-doped nanoparticles, an increase of the hyperfine interaction with the 7Li nucleus and with the 1H nuclei in the Zn(OH)(2) capping layer is observed when reducing the size of the nanoparticles. This effect is caused by the confinement of the shallow-donor 1s-type wave function that has a Bohr radius of about 1.5 nm, i.e., comparable to the dimension of the nanoparticles.

4.
Phys Rev Lett ; 88(4): 045504, 2002 Jan 28.
Article in English | MEDLINE | ID: mdl-11801137

ABSTRACT

Electron paramagnetic resonance and Hall measurements show consistently the presence of two donors ( D1 and D2) in state-of-the-art, nominally undoped ZnO single crystals. Using electron nuclear double resonance it is found that D1 shows hyperfine interaction with more than 50 shells of surrounding 67Zn nuclei, proving that it is a shallow, effective-mass-like donor. In addition D1 exhibits a single interaction with a H nucleus ( a(H) = 1.4 MHz), thus H is the defining element. It is in agreement with the prediction of Van de Walle [Phys. Rev. Lett. 85, 1012 (2000)] that H acts as a donor in ZnO. The concentration of D1 is 6x10(16) cm(-3) emphasizing its relevance for carrier statistics and applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...