Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(10): 2551-2557, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36877682

ABSTRACT

Halogenation of organic molecules causes chemical shifts of C1s core-level binding energies that are commonly used as fingerprints to identify chemical species. Here, we use synchrotron-based X-ray photoelectron spectroscopy and density functional theory calculations to unravel such chemical shifts by examining different partially fluorinated pentacene derivatives. Core-level shifts occur even for carbon atoms distant from the fluorination positions, yielding a continuous shift of about 1.8 eV with increasing degree of fluorination for pentacenes. Since also their LUMO energies shift markedly with the degree of fluorination of the acenes, core-level shifts result in a nearly constant excitation energy of the leading π* resonance as obtained in complementary recorded K-edge X-ray absorption spectra, hence demonstrating that local fluorination affects the entire π-system, including valence and core levels. Our results thus challenge the common picture of characteristic chemical core-level energies as fingerprint signatures of fluorinated π-conjugated molecules.

2.
Chemistry ; 28(7): e202103653, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34874080

ABSTRACT

Optoelectronic properties of molecular solids are important for organic electronic devices and are largely determined by the adopted molecular packing motifs. In this study, we analyzed such structure-property relationships for the partially regioselective fluorinated tetracenes 1,2,12-trifluorotetracene, 1,2,10,12-tetrafluorotetracene and 1,2,9,10,11-pentafluorotetracene that were further compared with tetracene and perfluoro-tetracene. Quantum chemical DFT calculations in combination with optical absorption spectroscopy data show that the frontier orbital energies are lowered with the degree of fluorination, while their optical gap is barely affected. However, the crystal structure changes from a herringbone packing motif of tetracene towards a planar stacking motif of the fluorinated tetracene derivatives, which is accompanied by the formation of excimers and leads to strongly red-shifted photoluminescence with larger lifetimes.

3.
Angew Chem Int Ed Engl ; 59(38): 16501-16505, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32510761

ABSTRACT

The rapid development of organic electronics is closely related to the availability of molecular materials with specific electronic properties. Here, we introduce a novel synthetic route enabling a unilateral functionalization of acenes along their long side, which is demonstrated by the synthesis of 1,2,10,11,12,14-hexafluoropentacene (1) and the related 1,2,9,10,11-pentafluorotetracene (2). Quantum chemical DFT calculations in combination with optical and X-ray absorption spectroscopy data indicate that the single-molecule properties of 1 are a connecting link between the organic semiconductor model systems pentacene (PEN) and perfluoropentacene (PFP). In contrast, the crystal structure analysis reveals a different packing motif than for the parent molecules. This can be related to distinct F⋅⋅⋅H interactions identified in the corresponding Hirshfeld surface analysis and also affects solid-state properties such as the exciton binding energy and the sublimation enthalpy.

SELECTION OF CITATIONS
SEARCH DETAIL
...