Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 35(10): e21897, 2021 10.
Article in English | MEDLINE | ID: mdl-34473378

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the development of bilateral renal cysts which enlarge continuously, leading to compression of adjacent intact nephrons. The growing cysts lead to a progressive decline in renal function. Cyst growth is driven by enhanced cell proliferation and chloride secretion into the cyst lumen. Chloride secretion is believed to occur mainly by the cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR), with some contribution by the calcium-activated chloride channel TMEM16A. However, our previous work suggested TMEM16A as a major factor for renal cyst formation. The contribution of CFTR to cyst formation has never been demonstrated in an adult ADPKD mouse model. We used mice with an inducible tubule-specific Pkd1 knockout, which consistently develop polycystic kidneys upon deletion of Pkd1. Cellular properties, ion currents, and cyst development in these mice were compared with that of mice carrying a co-deletion of Pkd1 and Cftr. Knockout of Cftr did not reveal any significant impact on cyst formation in the ADPKD mouse model. Furthermore, knockout of Cftr did not attenuate the largely augmented cell proliferation observed in Pkd1 knockout kidneys. Patch clamp analysis on primary renal epithelial cells lacking expression of Pkd1 indicated an only marginal contribution of CFTR to whole cell Cl- currents, which were clearly dominated by calcium-activated TMEM16A currents. In conclusion, CFTR does not essentially contribute to renal cyst formation in mice caused by deletion of Pkd1. Enhanced cell proliferation and chloride secretion is caused primarily by upregulation of the calcium-activated chloride channel TMEM16A.


Subject(s)
Anoctamin-1/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cysts/metabolism , Polycystic Kidney, Autosomal Dominant/metabolism , TRPP Cation Channels/metabolism , Animals , Anoctamin-1/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cysts/genetics , Cysts/pathology , Disease Models, Animal , Gene Knockdown Techniques , Mice , Mice, Knockout , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology , TRPP Cation Channels/genetics
2.
Environ Sci Technol ; 50(22): 12411-12420, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27766852

ABSTRACT

The microbial induced biomineralization of calcium carbonate using the ureolytic bacterium Sporosarcina pasteurii in the presence of trivalent europium, a substitute for trivalent actinides, was investigated by time-resolved laser-induced fluorescence spectroscopy (TRLFS) and a variety of physicochemical techniques. Results showed that the bacterial-driven hydrolysis of urea provides favorable conditions for CaCO3 precipitation and Eu3+ uptake due to subsequent increases in NH4+ and pH in the local environment. Precipitate morphologies were characteristic of biogenically formed CaCO3 and consistent with the respective mineral phase compositions. The formation of vaterite with some calcite was observed after 1 day, calcite with some vaterite after 1 week, and pure calcite after 2 weeks. The presence of organic material associated with the mineral was also identified and quantified. TRLFS was used to track the interaction and speciation of Eu3+ as a molecular probe with the mineral as a function of time. Initially, Eu3+ is incorporated into the vaterite phase, while during CaCO3 phase transformation Eu3+ speciation changes resulting in several species incorporated in the calcite phase either substituting at the Ca2+ site or in a previously unidentified, low-symmetry site. Comparison of the biogenic precipitates to an abiotic sample shows mineral origin can affect Eu3+ speciation within the mineral.


Subject(s)
Calcium Carbonate/chemistry , Sporosarcina , Europium/chemistry , Lasers , Spectrometry, Fluorescence
3.
Sci Rep ; 6: 21576, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26877225

ABSTRACT

The reactivity of calcite, one of the most abundant minerals in the earth's crust, is determined by the molecular details of its interface with the contacting solution. Recently, it has been found that trace concentrations of NaNO3 severely affect calcite's (104) surface and its reactivity. Here we combine molecular dynamics (MD) simulations, X-ray reflectivity (XR) and in situ atomic force microscopy (AFM) to probe the calcite (104) - water interface in the presence of NaNO3. Simulations reveal density profiles of different ions near calcite's surface, with NO3(-) able to reach closer to the surface than CO3(2-) and in higher concentrations. Reflectivity measurements show a structural destabilisation of the (104) surfaces' topmost atomic layers in NaNO3 bearing solution, with distorted rotation angles of the carbonate groups and substantial displacement of the lattice ions. Nanoscale AFM results confirm the alteration of crystallographic characteristics, and the ability of dissolved NaNO3 to modify the structure of interfacial water was observed by AFM force spectroscopy. Our experiments and simulations consistently evidence a dramatic deterioration of the crystals' surface, with potentially important implications for geological and industrial processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...