Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Sensors (Basel) ; 22(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35746354

ABSTRACT

A dust generator was developed to disperse and maintain a desired concentration of airborne dust in a controlled environment chamber to study poultry physiological response to sustained elevated levels of particulate matter. The goal was to maintain an indicated PM10 concentration of 50 µg/m3 of airborne dust in a 3.7 m × 4.3 m × 2.4 m (12 ft × 14 ft × 8 ft) controlled environment chamber. The chamber had a 1.5 m3/s (3200 cfm) filtered recirculation air handling system that regulated indoor temperature levels and a 0.06 m3/s (130 cfm) exhaust fan that exchanged indoor air for fresh outdoor air. Dry powdered red oak wood dust that passed through an 80-mesh screen cloth was used for the experiment. The dust generator metered dust from a rectangular feed hopper with a flat bottom belt to a 0.02 m3/s (46 cfm) centrifugal blower. A vibratory motor attached to the hopper ran only when the belt was operated to prevent bridging of powdered materials and to provide an even material feed rate. A laser particle counter was used to measure the concentration of airborne dust and provided feedback to an Arduino-based control system that operated the dust generator. The dust generator was operated using a duty cycle of one second on for every five seconds off to allow time for dispersed dust to mix with chamber air and reach the laser particle counter. The control system maintained an airborne PM10 dust concentration of 54.92 ± 6.42 µg/m3 in the controlled environment chamber during six weeks of continuous operation using red oak wood dust. An advantage of the automatically controlled dust generator was that it continued to operate to reach the setpoint concentration in response to changes in material flow due to humidity, partial blockages, and non-uniform composition of the material being dispersed. Challenges included dust being trapped by the recirculation filter and the exhaust fan removing airborne dust from the environmental chamber.


Subject(s)
Air Pollution, Indoor , Dust , Air Pollution, Indoor/analysis , Dust/analysis , Environmental Monitoring , Particle Size , Particulate Matter , Powders
3.
Sensors (Basel) ; 21(19)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34640984

ABSTRACT

An ammonia gas (NH3) generator was developed to maintain a set concentration of ammonia gas in a controlled environment chamber to study poultry physiological responses to sustained elevated levels of ammonia gas. The goal was to maintain 50 parts per million (ppm) of ammonia gas in a 3.7 m × 4.3 m × 2.4 m (12 ft × 14 ft × 8 ft) controlled environment chamber. The chamber had a 1.5 m3/s (3000 cfm) recirculation system that regulated indoor temperature and humidity levels and a 0.06 m3/s (130 cfm) exhaust fan that exchanged indoor air for fresh outdoor air. The ammonia generator was fabricated by coupling ultrasonic humidifiers with an Arduino-based microcontroller and a metallic oxide MQ-137 ammonia gas sensor. Preliminary evaluation under steady conditions showed the average MQ-137 gas sensor accuracy was within 1.4% of the 65.4 ppm concentration measured using a highly accurate infrared gas analyzer. Further evaluation was performed for a setpoint concentration of 50 ppm where ammonia generator reservoirs were filled with 2% or 10% ammonia liquid. For the system tested, it was found that two generators operating at the same time filled with 3.8 L (1.0 gallon) of 2% ammonia cleaning liquid each (7.6 L or 2.0 gallons total) could maintain a gas level of 49.45 ± 0.79 ppm in the chamber air for a duration of 30 h before refilling was required. One generator filled with 3.8 L of 10% ammonia cleaning liquid could maintain 51.24 ± 1.53 ppm for 195 h. Two ammonia generators were deployed for a six-week animal health experiment in two separate controlled environment chambers. The two ammonia generators maintained an average ammonia concentration of 46.42 ± 3.81 ppm and 45.63 ± 4.95 ppm for the duration of the experiment.


Subject(s)
Ammonia , Poultry , Animals , Humidity , Temperature
4.
Animals (Basel) ; 11(8)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34438808

ABSTRACT

This work investigated alternative ventilation schemes to help define a proper ventilation system design in cage-free hen houses with the goal of assuring bird welfare through comfortable conditions. Computational fluid dynamics (CFD) modeling was employed to simulate indoor and outdoor airflows to quantify the effectiveness of ventilation systems in maintaining suitable and uniform living conditions at the hen level. Four three-dimensional CFD models were developed based on a full-scale floor-raised layer house, corresponding to ventilation schemes of the standard top-wall inlet, sidewall exhaust, and three alternatives: mid-wall inlet, ceiling exhaust; mid-wall inlet, ridge exhaust; and mid-wall inlet, attic exhaust with potential for pre-treatment of exhaust air. In a sophisticated and powerful achievement of the analysis, 2365 birds were individually modeled with simplified bird-shapes to represent a realistic number, body heat, and airflow obstruction of hens housed. The simulated ventilation rate for the layer house models was 1.9-2.0 m3/s (4100 ft3/min) in the desired range for cold weather (0 °C). Simulation results and subsequent analyses demonstrated that these alternative models had the capacity to create satisfactory comfortable temperature and air velocity at the hen level. A full-scale CFD model with individual hen models presented robustness in evaluating bird welfare conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...